Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Biol Cell ; : mbcE21100527, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37585285

RESUMO

The LMNA gene encodes the nuclear envelope proteins Lamins A and C, which comprise a major part of the nuclear lamina, provide mechanical support to the nucleus, and participate in diverse intracellular signaling. LMNA mutations give rise to a collection of diseases called laminopathies, including dilated cardiomyopathy (LMNA-DCM) and muscular dystrophies. Although nuclear deformities are a hallmark of LMNA-DCM, the role of nuclear abnormalities in the pathogenesis of LMNA-DCM remains incompletely understood. Using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from LMNA mutant patients and healthy controls, we show that LMNA mutant iPSC-CM nuclei have altered shape or increased size compared to healthy control iPSC-CM nuclei. The LMNA mutation exhibiting the most severe nuclear deformities, R249Q, additionally caused reduced nuclear stiffness and increased nuclear fragility. Importantly, for all cell lines, the degree of nuclear abnormalities corresponded to the degree of Lamin A/C and Lamin B1 mislocalization from the nuclear envelope. The mislocalization was likely due to altered assembly of Lamin A/C. Collectively, these results point to the importance of correct lamin assembly at the nuclear envelope in providing mechanical stability to the nucleus and suggest that defects in nuclear lamina organization may contribute to the nuclear and cellular dysfunction in LMNA-DCM.

2.
Nucleus ; 14(1): 2180206, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36809122

RESUMO

Lamins A/C are nuclear intermediate filament proteins that are involved in diverse cellular mechanical and biochemical functions. Here, we report that recognition of Lamins A/C by a commonly used antibody (JOL-2) that binds the Lamin A/C Ig-fold and other antibodies targeting similar epitopes is highly dependent on cell density, even though Lamin A/Clevels do not change. We propose that the effect is caused by partial unfolding or masking of the C'E and/or EF loops of the Ig-fold in response to cell spreading. Surprisingly, JOL-2 antibody labeling was insensitive to disruption of cytoskeletal filaments or the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. Furthermore, neither nuclear stiffness nor nucleo-cytoskeletal force transmission changed with cell density. These findings are important for the interpretation of immunofluorescence data for Lamin A/C and also raise the intriguing prospect that the conformational changes may play a role in Lamin A/C mediated cellular function.


Assuntos
Núcleo Celular , Lamina Tipo A , Lamina Tipo A/metabolismo , Epitopos/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Contagem de Células , Laminas/metabolismo , Lamina Tipo B/metabolismo
3.
Chem Commun (Camb) ; 49(73): 8063-5, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23903030

RESUMO

As dendrimers approach their dense shell or dense packed limit, a certain amount of conformational organization exists. Any substrate binding within the dendrimer's external layer will experience the same organizational effects. This paper describes how these effects can be exploited towards stereocontrol with respect to binding and reactivity.


Assuntos
Dendrímeros/química , Aminas/química , Conformação Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...