Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 23(6): 1087-1115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763938

RESUMO

The protection of Earth's stratospheric ozone (O3) is an ongoing process under the auspices of the universally ratified Montreal Protocol and its Amendments and adjustments. A critical part of this process is the assessment of the environmental issues related to changes in O3. The United Nations Environment Programme's Environmental Effects Assessment Panel provides annual scientific evaluations of some of the key issues arising in the recent collective knowledge base. This current update includes a comprehensive assessment of the incidence rates of skin cancer, cataract and other skin and eye diseases observed worldwide; the effects of UV radiation on tropospheric oxidants, and air and water quality; trends in breakdown products of fluorinated chemicals and recent information of their toxicity; and recent technological innovations of building materials for greater resistance to UV radiation. These issues span a wide range of topics, including both harmful and beneficial effects of exposure to UV radiation, and complex interactions with climate change. While the Montreal Protocol has succeeded in preventing large reductions in stratospheric O3, future changes may occur due to a number of natural and anthropogenic factors. Thus, frequent assessments of potential environmental impacts are essential to ensure that policies remain based on the best available scientific knowledge.


Assuntos
Ozônio Estratosférico , Raios Ultravioleta , Humanos , Ozônio Estratosférico/análise , Raios Ultravioleta/efeitos adversos , Ozônio/química , Mudança Climática
2.
Environ Sci Process Impacts ; 23(12): 1834-1838, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34817495

RESUMO

We argue that there is a need for a more precise of PFAS in a way that avoids including compounds with single CF3-, -CF2-, or CF- groups and excludes TFA and compounds that degrade to just give TFA. An example that meets this need is the definition by the U.S. Environmental Protection Agency of PFAS as "per- and polyfluorinated substances that structurally contain the unit R-(CF2)-C(F)(R1)R2. Both the CF2 and CF moieties are saturated carbons and none of the R groups (R, R1, or R2) can be hydrogen". Adoption of this definition, or one like it, would place future technical and regulatory discussions of the environmental impacts of organo-fluorine compounds on a sounder technical footing by focusing PFAS discussions and regulation on long-chain perfluoroalkyl sulfonic acids and perfluoroalkyl carboxylic acids.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Carboxílicos , Fluorocarbonos/análise , Ácidos Sulfônicos , Estados Unidos , United States Environmental Protection Agency , Poluentes Químicos da Água/análise
3.
Rev Geophys ; 58(3): e2019RG000691, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33015672

RESUMO

Human activity has led to increased atmospheric concentrations of many gases, including halocarbons, and may lead to emissions of many more gases. Many of these gases are, on a per molecule basis, powerful greenhouse gases, although at present-day concentrations their climate effect is in the so-called weak limit (i.e., their effect scales linearly with concentration). We published a comprehensive review of the radiative efficiencies (RE) and global warming potentials (GWP) for around 200 such compounds in 2013 (Hodnebrog et al., 2013, https://doi.org/10.1002/rog.20013). Here we present updated RE and GWP values for compounds where experimental infrared absorption spectra are available. Updated numbers are based on a revised "Pinnock curve", which gives RE as a function of wave number, and now also accounts for stratospheric temperature adjustment (Shine & Myhre, 2020, https://doi.org/10.1029/2019MS001951). Further updates include the implementation of around 500 absorption spectra additional to those in the 2013 review and new atmospheric lifetimes from the literature (mainly from WMO (2019)). In total, values for 60 of the compounds previously assessed are based on additional absorption spectra, and 42 compounds have REs which differ by >10% from our previous assessment. New RE calculations are presented for more than 400 compounds in addition to the previously assessed compounds, and GWP calculations are presented for a total of around 250 compounds. Present-day radiative forcing due to halocarbons and other weak absorbers is 0.38 [0.33-0.43] W m-2, compared to 0.36 [0.32-0.40] W m-2 in IPCC AR5 (Myhre et al., 2013, https://doi.org/10.1017/CBO9781107415324.018), which is about 18% of the current CO2 forcing.

4.
Phys Chem Chem Phys ; 20(16): 11306-11316, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29637965

RESUMO

The OH-initiated photo-oxidation of perfluoro ethyl vinyl ether (C2F5OCF[double bond, length as m-dash]CF2, PEVE) in air (298 K, 50 and 750 Torr total pressure) was studied in a photochemical reactor using in situ detection of PEVE and its products by Fourier transform IR absorption spectroscopy. The relative rate technique was used to derive the rate coefficient, k1, for the reaction of PEVE with OH as k1 = (2.8 ± 0.3) × 10-12 cm3 molecule-1 s-1. The photo-oxidation of PEVE in the presence of NOx at 1 bar results in formation of C2F5OCFO, FC(O)C(O)F and CF2O in molar yields of 0.50 ± 0.07, 0.46 ± 0.07 and 1.50 ± 0.22, respectively. FC(O)C(O)F and CF2O are formed partially in secondary, most likely heterogeneous processes. At a reduced pressure of 50 Torr, the product distribution is shifted towards formation of FC(O)C(O)F, indicating the important role of collisional quenching of initially formed association complexes, and enabling details of the reaction mechanism to be elucidated. An atmospheric photo-oxidation mechanism for PEVE is presented and the environmental implications of PEVE release and degradation are discussed.

5.
J Phys Chem A ; 121(45): 8543-8560, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28982240

RESUMO

The oxidation of 2-butyl radicals (and to a lesser extent 1-butyl radicals) has been studied over the temperature range of 298-735 K. The reaction of Cl atoms (formed by 360 nm irradiation of Cl2) with n-butane generated the 2-butyl radicals in mixtures of n-C4H10, O2, and Cl2 at temperatures below 600 K. Above 600 K, 2-butyl radicals were produced by thermal combustion reactions in the absence of chlorine. The yields of the products were measured by gas chromatography using a flame ionization detector. Major products quantified include acetone, acetic acid, acetaldehyde, butanone, 2-butanol, butanal, 1- and 2- chlorobutane, 1-butene, trans-2-butene, and cis-2-butene. At 298 K, the major oxygenated products are those expected from bimolecular reactions of 2-butylperoxy radicals (butanone, 2-butanol, and acetaldehyde). As the temperature rises to 390 K, the butanone decreases while acetaldehyde increases because of the increased rate of 2-butoxy radical decomposition. Acetone and acetic acid first appear in significant yield near 400 K, and these species rise slowly at first and then sharply, peaking near 525 K at yields of ∼25 and ∼20 mol %, respectively. In the same temperature range (400-525 K), butanone, acetaldehyde, and 2-butanol decrease rapidly. This suggests that acetone and acetic acid may be formed by previously unknown reaction channels of the 2-butylperoxy radical, which are in competition with those that lead to butanone, acetaldehyde, and 2-butanol. Above 570 K, the yields of acetone and acetic acid fall rapidly as the yields of the butenes rise. Experiments varying the Cl atom density, which in turn controls the entire radical pool density, were performed in the temperature range of 410-440 K. Decreasing the Cl atom density increased the yields of acetone and acetic acid while the yields of butanone, acetaldehyde, and 2-butanol decreased. This is consistent with the formation of acetone and acetic acid by unimolecular decomposition channels of the 2-butylperoxy radical, which are in competition with the bimolecular channels that form butanone, acetaldehyde, and 2-butanol. Such unimolecular decomposition channels would be unlikely to proceed through conventional transition states because those states would be very constrained. Therefore, the possibility that these decomposition channels proceed via roaming should be considered. In addition, we investigated and were unable to fit our data trends by a simplified ketohydroperoxide mechanism.

8.
Chemosphere ; 129: 135-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25070769

RESUMO

Short-chain haloolefins are being introduced as replacements for saturated halocarbons. The unifying chemical feature of haloolefins is the presence of a CC double bond which causes the atmospheric lifetimes to be significantly shorter than for the analogous saturated compounds. We discuss the atmospheric lifetimes, photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs) of haloolefins. The commercially relevant short-chain haloolefins CF3CFCH2 (1234yf), trans-CF3CHCHF (1234ze(Z)), CF3CFCF2 (1216), cis-CF3CHCHCl (1233zd(Z)), and trans-CF3CHCHCl (1233zd(E)) have short atmospheric lifetimes (days to weeks), negligible POCPs, negligible GWPs, and ODPs which do not differ materially from zero. In the concentrations expected in the environment their atmospheric degradation products will have a negligible impact on ecosystems. CF3CFCH2 (1234yf), trans-CF3CHCHF (1234ze(Z)), CF3CFCF2 (1216), cis-CF3CHCHCl (1233zd(Z)), and trans-CF3CHCHCl (1233zd(E)) are environmentally acceptable.


Assuntos
Poluentes Atmosféricos/química , Alcenos/química , Mudança Climática , Hidrocarbonetos Halogenados/química , Perda de Ozônio , Ozônio/análise , Monitoramento Ambiental
11.
Environ Sci Technol ; 46(11): 6379-84, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22533454

RESUMO

The approximately 100 million tonne per year increase in the use of corn to produce ethanol in the U.S. over the past 10 years, and projections of greater future use, have raised concerns that reduced exports of corn (and other agricultural products) and higher commodity prices would lead to land-use changes and, consequently, negative environmental impacts in other countries. The concerns have been driven by agricultural and trade models, which project that large-scale corn ethanol production leads to substantial decreases in food exports, increases in food prices, and greater deforestation globally. Over the past decade, the increased use of corn for ethanol has been largely matched by the increased corn harvest attributable mainly to increased yields. U.S. exports of corn, wheat, soybeans, pork, chicken, and beef either increased or remained unchanged. Exports of distillers' dry grains (DDG, a coproduct of ethanol production and a valuable animal feed) increased by more than an order of magnitude to 9 million tonnes in 2010. Increased biofuel production may lead to intensification (higher yields) and extensification (more land) of agricultural activities. Intensification and extensification have opposite impacts on land use change. We highlight the lack of information concerning the magnitude of intensification effects and the associated large uncertainties in assessments of the indirect land use change associated with corn ethanol.


Assuntos
Agricultura , Biocombustíveis/economia , Comércio/economia , Etanol/metabolismo , Alimentos/economia , Zea mays/economia , Zea mays/crescimento & desenvolvimento , Estados Unidos
12.
J Phys Chem A ; 116(24): 5958-71, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22229765

RESUMO

The rate constant of the reaction Cl + CF(3)CF═CH(2) (k(1)) has been measured relative to several reference species using the relative rate technique with either gas chromatographic analysis with flame-ionization detection (GC/FID) or Fourier transform infrared (FTIR) analysis. Cl atoms were generated by UV irradiation of Cl(2)/CF(3)CF═CH(2)/reference/N(2)/O(2) mixtures. At 300-400 K in the presence of >20 Torr O(2), k(1) = 1.2 × 10(-11) e((+1100/RT)) cm(3) molecule(-1) s(-1). In N(2) diluent, k(1) has a sharp negative temperature coefficient resulting from the relatively small exothermicity of the following reactions: (1a) Cl + CF(3)CF═CH(2) ↔ CF(3)CFClCH(2)(•); (1b) Cl + CF(3)CF═CH(2) ↔ CF(3)CF(•)CH(2)Cl (reaction 1), which were determined in these experiments to be ∼16.5 (±2.0) kcal mol(-1). This low exothermicity causes reaction 1 to become significantly reversible even at ambient temperature. The rate constant ratio for the reaction of the chloroalkyl radicals formed in reaction 1 with Cl(2) (k(2)) or O(2) (k(3)) was measured to be k(2)/k(3) = 0.4 e(-(3000/RT)) for 300-400 K. At 300 K, k(2)/k(3) = 0.0026. The reversibility of reaction 1 combined with the small value of k(2)/k(3) leads to a sensitive dependence of k(1) on the O(2) concentration. Products measured by GC/FID as a function of temperature are CF(3)CFClCH(2)Cl, CF(3)COF, and CH(2)Cl(2). The mechanism leading to these products is discussed. The rate constant for the reaction Cl + CF(3)CFClCH(2)Cl (k(11)) was measured as a function of temperature (300-462 K) at 760 Torr to be k(11) = 8.2 × 10(-12) e(-(4065/RT)) cm(3) molecule(-1) s(-1). Rate constants relative to CH(4) for the reactions of Cl with the reference compounds CH(3)Cl, CH(2)Cl(2), and CHCl(3) were measured at 470 K to resolve a literature discrepancy. (R = 1.986 cal K(-1) mol(-1)).

13.
Phys Chem Chem Phys ; 14(5): 1735-48, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22187719

RESUMO

FTIR-smog chamber techniques were used to study the products and mechanisms of the Cl atom and OH radical initiated oxidation of trans-3,3,3-trifluoro-1-chloro-propene, t-CF(3)CH=CHCl, in 700 Torr of air or N(2)/O(2) diluent at 296 ± 2 K. The reactions of Cl atoms and OH radicals with t-CF(3)CH=CHCl occur via addition to the >C=C< double bond; chlorine atoms add 15 ± 5% at the terminal carbon and 85 ± 5% at the central carbon, OH radicals add approximately 40% at the terminal carbon and 60% at the central carbon. The major products in the Cl atom initiated oxidation of t-CF(3)CH=CHCl were CF(3)CHClCHO and CF(3)C(O)CHCl(2), minor products were CF(3)CHO, HCOCl and CF(3)COCl. The yields of CF(3)C(O)CHCl(2), CF(3)CHClCOCl and CF(3)COCl increased at the expense of CF(3)CHO, HCOCl and CF(3)CHClCHO as the O(2) partial pressure was increased over the range 10-700 Torr. Chemical activation plays a significant role in the fate of CF(3)CH(O)CHCl(2) and CF(3)CClHCHClO radicals. In addition to reaction with O(2) to yield CF(3)COCl and HO(2) the major competing fate of CF(3)CHClO is Cl elimination to give CF(3)CHO (not C-C bond scission as previously thought). As part of this study k(Cl + CF(3)C(O)CHCl(2)) = (2.3 ± 0.3) × 10(-14) and k(Cl + CF(3)CHClCHO) = (7.5 ± 2.0) × 10(-12) cm(3) molecule(-1) s(-1) were determined using relative rate techniques. Reaction with OH radicals is the major atmospheric sink for t-CF(3)CH=CHCl. Chlorine atom elimination giving the enol CF(3)CH=CHOH appears to be the sole atmospheric fate of the CF(3)CHCHClOH radicals. The yield of CF(3)COOH in the atmospheric oxidation of t-CF(3)CH=CHCl will be negligible (<2%). The results are discussed with respect to the atmospheric chemistry and environmental impact of t-CF(3)CH=CHCl.

15.
Phys Chem Chem Phys ; 13(7): 2758-64, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21152566

RESUMO

FTIR smog chamber techniques were used to measure k(Cl + C(2)F(5)CH(2)OCH(3)) = (2.52 ± 0.37) × 10(-11) and k(OH + C(2)F(5)CH(2)OCH(3)) = (5.78 ± 1.02) × 10(-13) cm(3) molecule(-1) s(-1) in 700 Torr of air diluent at 296 ± 1 K. The atmospheric lifetime of C(2)F(5)CH(2)OCH(3) is estimated to be 20 days. Reaction of chlorine atoms with C(2)F(5)CH(2)OCH(3) proceeds 18 ± 2% at the -CH(2)- group and 82 ± 2% at the -CH(3) group. Reaction of OH radicals with C(2)F(5)CH(2)OCH(3) proceeds 44 ± 5% at the -CH(2)- group and 56 ± 5% at the -CH(3) group. The atmospheric fate of C(2)F(5)CH(2)OCH(2)O radicals is reaction with O(2) to give C(2)F(5)CH(2)OCHO. The atmospheric fate of C(2)F(5)CH(O)OCH(3) radicals is C-C bond-cleavage to give C(2)F(5) radicals and CH(3)OCHO (methyl formate). The infrared spectrum was recorded and used to estimate a global warming potential of 6 (100 year time horizon) for C(2)F(5)CH(2)OCH(3).

17.
J Phys Chem A ; 114(47): 12462-9, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21049965

RESUMO

Smog chamber/FTIR techniques were used to determine rate constants of k(Cl + i-butanol) = (2.06 ± 0.40) × 10(-10), k(Cl + i-butyraldehyde) = (1.37 ± 0.08) × 10(-10), and k(OH + i-butanol) = (1.14 ± 0.17) × 10(-11) cm(3) molecule(-1) s(-1) in 700 Torr of N(2)/O(2) diluent at 296 ± 2K. The UV irradiation of i-butanol/Cl(2)/N(2) mixtures gave i-butyraldehyde in a molar yield of 53 ± 3%. The chlorine atom initiated oxidation of i-butanol in the absence of NO gave i-butyraldehyde in a molar yield of 48 ± 3%. The chlorine atom initiated oxidation of i-butanol in the presence of NO gave (molar yields): i-butyraldehyde (46 ± 3%), acetone (35 ± 3%), and formaldehyde (49 ± 3%). The OH radical initiated oxidation of i-butanol in the presence of NO gave acetone in a yield of 61 ± 4%. The reaction of chlorine atoms with i-butanol proceeds 51 ± 5% via attack on the α-position to give an α-hydroxy alkyl radical that reacts with O(2) to give i-butyraldehyde. The atmospheric fate of (CH(3))(2)C(O)CH(2)OH alkoxy radicals is decomposition to acetone and CH(2)OH radicals. The atmospheric fate of OCH(2)(CH(3))CHCH(2)OH alkoxy radicals is decomposition to formaldehyde and CH(3)CHCH(2)OH radicals. The results are consistent with, and serve to validate, the mechanism that has been assumed in the estimation of the photochemical ozone creation potential of i-butanol.


Assuntos
Butanóis/química , Acetona/química , Atmosfera , Química/métodos , Cloro/química , Formaldeído/química , Radicais Livres , Cinética , Modelos Químicos , Oxigênio/química , Fotoquímica/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Raios Ultravioleta
18.
Br J Anaesth ; 105(6): 760-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20935004

RESUMO

BACKGROUND: Although the increasing abundance of CO(2) in our atmosphere is the main driver of the observed climate change, it is the cumulative effect of all forcing agents that dictate the direction and magnitude of the change, and many smaller contributors are also at play. Isoflurane, desflurane, and sevoflurane are widely used inhalation anaesthetics. Emissions of these compounds contribute to radiative forcing of climate change. To quantitatively assess the impact of the anaesthetics on the forcing of climate, detailed information on their properties of heat (infrared, IR) absorption and atmospheric lifetimes are required. METHODS: We have measured the IR spectra of these anaesthetics and conducted calculations of their contribution to radiative forcing of climate change recognizing the important fact that radiative forcing is strongly dependent on the wavelength of the absorption features. RESULTS: Radiative efficiencies of 0.453, 0.469, and 0.351 W m(-2) ppb(-1) and global warming potentials (GWPs) of 510, 1620, and 210 (100 yr time horizon) were established for isoflurane, desflurane, and sevoflurane, respectively. CONCLUSIONS: On the basis of the derived 100 yr GWPs, the average climate impact per anaesthetic procedure at the University of Michigan is the same as the emission of ∼22 kg CO(2). We estimate that the global emissions of inhalation anaesthetics have a climate impact which is comparable with that from the CO(2) emissions from one coal-fired power plant or 1 million passenger cars.


Assuntos
Poluentes Atmosféricos/química , Anestésicos Inalatórios/química , Aquecimento Global , Atmosfera/química , Dióxido de Carbono/química , Desflurano , Humanos , Isoflurano/análogos & derivados , Isoflurano/química , Éteres Metílicos/química , Sevoflurano , Espectrofotometria Infravermelho/métodos
19.
J Phys Chem A ; 114(25): 6850-60, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20527864

RESUMO

The rate constant of the reaction of Cl atoms with methacrolein (k(1)) has been measured relative to that of Cl with propane (k(2)) or cyclohexane (k(6)) at ambient temperature and pressures varying from 1-950 Torr. The experiments were carried out by irradiation (350 nm) of Cl(2)/methacrolein/propane or cyclohexane mixtures in N(2) or N(2)/O(2) diluent at ambient temperature in a spherical (500 cm(3)) Pyrex reactor (GC/FID analyses) or a 140 L FTIR smog chamber. The measured relative rate constant ratios in the GC/FID experiments were k(1)/k(2) = 1.464 +/- 0.015(2sigma) in N(2) and k(1)/k(2) = 1.68 +/- 0.03(2sigma) in N(2)/O(2) diluent (O(2) > 20,000 ppm). No pressure dependence was observed over the range studied in N(2) (120-950 Torr) using the GC/FID. In the FTIR/smog chamber experiments values of k(1)/k(6) = 0.645 +/- 0.032, 0.626 +/- 0.037, 0.586 +/- 0.026, and 0.479 +/- 0.024 were measured in 700, 100, 10, and 1 Torr, respectively, of N(2) diluent. Using k(2) = (1.4 +/- 0.2) x 10(-10) and k(6) = (3.3 +/- 0.5) x 10(-10) high pressure limiting rate constants of k(1) = (2.05 +/- 0.3) x 10(-10) [GC/FID] and (2.13 +/- 0.34) x 10(-10) [FTIR] cm(3) molecule(-1) s(-1) were determined. In experiments using the GC/FID reactor with N(2) diluent the following products (molar yields) were observed: 2,3-dichloro-2-methylpropanal [(47.2 +/- 8)% excluding error in calibration]; methacryloyl chloride [(22.9 +/- 2)%]; and 2-chloromethylacrolein [(2.3 +/- 0.8)%]. Addition of 200 ppm O(2) (with Cl(2) = 5000 ppm) resulted in a sharp reduction of the 2,3-dichloro-2-methylpropanal yield (to approximately 2%) with an accompanying appearance of chloroacetone [yield = (55 +/- 7)% decreasing to (44 +/- 7)% in air diluent]. The methacryloyl chloride yield was 23% for [O(2)]/[Cl(2)] ratios from 0 to 0.2 but decreased to near zero as the O(2)/Cl(2) ratio was increased to approximately 400. The variation in methacryloyl chloride yield with the O(2)/Cl(2) ratio in the initial mixture allowed an approximate measurement of the rate constant for the reaction of the methacryloyl radical with O(2) relative to that with Cl(2) (k(O(2))/k(Cl(2)) = 0.066 +/- 0.02). In experiments using the FTIR reactor in 700 Torr of N(2) diluent, methacryloyl chloride [(26 +/- 3)%] and HCl [(27 +/- 3)%] were observed as products. In 700 Torr of air diluent, the observed products were: chloroacetone [(44 +/- 5)%], CO(2) [(27 +/- 3)%], HCl [(21 +/- 3)%], and HCHO [(14 +/- 2)%], and CH(3)C(O)CH(2)OH (3-4%). The observation of CH(3)C(O)CH(2)OH indicates the presence of OH radicals in the system. At atmospheric pressure and 297 K, the title reaction proceeds [(24.5 +/- 5)%] via abstraction of the aldehydic hydrogen atom, [(2.3 +/- 0.8)%] via abstraction from the -CH(3) group, and approximately [(47 +/- 8) %] via addition to the CH(2)=C < double bond with most of the addition occurring at the terminal carbon atom (uncertainties represent statistical 2sigma). The results are discussed with respect to the literature data.

20.
J Phys Chem A ; 114(20): 6131-7, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20433179

RESUMO

Smog chamber FTIR techniques were used to measure k(Cl + n-C(6)F(13)CH(2)CHO) = (1.84 +/- 0.22) x 10(-11), k(Cl + n-C(6)F(13)CHO) = (1.75 +/- 0.70) x 10(-12), and k(OH + n-C(6)F(13)CH(2)CHO) = (2.15 +/- 0.26) x 10(-12) cm(3) molecule(-1) s(-1) in 700 Torr of N(2) or air diluent at 296 +/- 2K. The chlorine-atom-initiated oxidation of n-C(6)F(13)CH(2)CH(2)OH in air gives n-C(6)F(13)CH(2)CHO in a molar yield of 99 +/- 8%. The atmospheric fate of n-C(6)F(13)CH(2)C(O) radicals is reaction with O(2), while the fate of n-C(6)F(13)C(O) radicals is decomposition to give n-C(6)F(13) radicals and CO. The results are discussed with respect to the atmospheric chemistry of fluorinated alcohols and the formation of perfluorocarboxylic acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...