Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 8(2): 025007, 2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27171651

RESUMO

Thirty-two poly(ε)caprolactone (PCL) scaffolds have been produced by electrospinning directly into an auricle-shaped mould and seeded with articular chondrocytes harvested from bovine ankle joints. After seeding, the auricle shaped constructs were cultured in vitro and analysed at days 1, 7, 14 and 21 for regional differences in total DNA, glycosaminoglycan (GAG) and collagen (COL) content as well as the expression of aggrecan (AGG), collagen type I and type II (COL1/2) and matrix metalloproteinase 3 and 13 (MMP3/13). Stress-relaxation indentation testing was performed to investigate regional mechanical properties of the electrospun constructs. Electrospinning into a conductive mould yielded stable 3D constructs both initially and for the whole in vitro culture period, with an equilibrium modulus in the MPa range. Rapid cell proliferation and COL accumulation was observed until week 3. Quantitative real time PCR analysis showed an initial increase in AGG, no change in COL2, a persistent increase in COL1, and only a slight decrease initially for MMP3. Electrospinning of fibrous scaffolds directly into an auricle-shape represents a promising option for auricular tissue engineering, as it can reduce the steps needed to achieve an implantable structure.


Assuntos
Condrócitos/citologia , Poliésteres/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Animais , Bovinos , Técnicas de Cultura de Células , Condrócitos/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Poliésteres/síntese química
2.
J Mech Behav Biomed Mater ; 58: 188-198, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26227737

RESUMO

Electrospinning is an electrical field driven method to produce polymer fibre membranes by deposition of a charged polymer jet onto a grounded collector. Fibre alignment within these mats is usually achieved by a fast collector movement, which is not feasible for all collector geometries, such as small diameter tubes or free-form moulds. The aim of this study was to evaluate the use of charged deflector plates to apply a dynamic, alternating electrical field perpendicular to the spinning direction, in order to directly control the fibre trajectory. Different field signal types, deflector plate voltages and deflection frequency ranges have been investigated. 210 poly(ɛ)caprolactone (PCL) membranes were electrospun. SEM images of each membrane were analysed using ImageJ. Main fibre diameter and orientation, as well as the degree of fibre alignment, were calculated, while a subset of the spun scaffolds were tested for their tensile properties. Higher deflector plate voltage amplitude resulted in a better fibre alignment. The best alignment was observed in a low deflection frequency range from 2 to 10 Hz. Mean main fibre direction was 87±18°, relative to the deflection axis, while fibre alignment had only a minor effect on the average fibre diameter. Young's modulus and yield stress increased with the ratio of the parallel fibre component. The feasibility of the described method to achieve fibre alignment was demonstrated. However, the main fibre direction is not aligned with the deflection axis, but consistently perpendicular to it, which is also reflected in the tensile properties of spun samples.


Assuntos
Membranas Artificiais , Nanofibras/química , Engenharia Tecidual , Poliésteres , Polímeros
3.
Eur Spine J ; 24(11): 2402-10, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26215177

RESUMO

PURPOSE: Mechanical loading is an important parameter that alters the homeostasis of the intervertebral disc (IVD). Studies have demonstrated the role of compression in altering the cellular metabolism, anabolic and catabolic events of the disc, but little is known how complex loading such as torsion-compression affects the IVD cell metabolism and matrix homeostasis. Studying how the duration of torsion affects disc matrix turnover could provide guidelines to prevent overuse injury to the disc and suggest possible beneficial effect of torsion. The aim of the study was to evaluate the biological response of the IVD to different durations of torsional loading. METHODS: Intact bovine caudal IVD were isolated for organ culture in a bioreactor. Different daily durations of torsion were applied over 7 days at a physiological magnitude (±2°) in combination with 0.2 MPa compression, at a frequency of 1 Hz. RESULTS: Nucleus pulpous (NP) cell viability and total disc volume decreased with 8 h of torsion-compression per day. Gene expression analysis suggested a down-regulated MMP13 with increased time of torsion. 1 and 4 h per day torsion-compression tended to increase the glycosaminoglycans/hydroxyproline ratio in the NP tissue group. CONCLUSIONS: Our result suggests that load duration thresholds exist in both torsion and compression with an optimal load duration capable of promoting matrix synthesis and overloading can be harmful to disc cells. Future research is required to evaluate the specific mechanisms for these observed effects.


Assuntos
Fenômenos Biomecânicos/fisiologia , Disco Intervertebral/fisiologia , Técnicas de Cultura de Órgãos/métodos , Animais , Reatores Biológicos , Bovinos
4.
Curr Stem Cell Res Ther ; 10(4): 339-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25764196

RESUMO

In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of "smart" biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Reatores Biológicos , Degeneração do Disco Intervertebral/terapia , Disco Intervertebral/citologia , Células-Tronco Mesenquimais/citologia , Técnicas de Cultura de Órgãos , Animais , Humanos
6.
PLoS One ; 8(8): e72489, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24013824

RESUMO

The spine is routinely subjected to repetitive complex loading consisting of axial compression, torsion, flexion and extension. Mechanical loading is one of the important causes of spinal diseases, including disc herniation and disc degeneration. It is known that static and dynamic compression can lead to progressive disc degeneration, but little is known about the mechanobiology of the disc subjected to combined dynamic compression and torsion. Therefore, the purpose of this study was to compare the mechanobiology of the intervertebral disc when subjected to combined dynamic compression and axial torsion or pure dynamic compression or axial torsion using organ culture. We applied four different loading modalities [1. control: no loading (NL), 2. cyclic compression (CC), 3. cyclic torsion (CT), and 4. combined cyclic compression and torsion (CCT)] on bovine caudal disc explants using our custom made dynamic loading bioreactor for disc organ culture. Loads were applied for 8 h/day and continued for 14 days, all at a physiological magnitude and frequency. Our results provided strong evidence that complex loading induced a stronger degree of disc degeneration compared to one degree of freedom loading. In the CCT group, less than 10% nucleus pulposus (NP) cells survived the 14 days of loading, while cell viabilities were maintained above 70% in the NP of all the other three groups and in the annulus fibrosus (AF) of all the groups. Gene expression analysis revealed a strong up-regulation in matrix genes and matrix remodeling genes in the AF of the CCT group. Cell apoptotic activity and glycosaminoglycan content were also quantified but there were no statistically significant differences found. Cell morphology in the NP of the CCT was changed, as shown by histological evaluation. Our results stress the importance of complex loading on the initiation and progression of disc degeneration.


Assuntos
Proteínas da Matriz Extracelular/biossíntese , Matriz Extracelular/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Regulação para Cima , Animais , Reatores Biológicos , Bovinos , Força Compressiva , Matriz Extracelular/patologia , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Técnicas de Cultura de Órgãos , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...