Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334075

RESUMO

ConspectusMetal nanoparticles (NPs) are one of the most frequently used heterogeneous catalysts. However, only the surface atoms in the NPs can participate in catalytic reactions. To maximize the atomic efficiency, the active sites can be reduced to single atoms. Generally, catalysts that have isolated metal atoms on the surface of a support are called single-atom catalysts (SACs). Many techniques have been developed and applied to probe the structures of SACs. Nevertheless, the structural characterization of SACs is still challenging as it requires the analysis of their structure and properties with atomic and sometimes even subatomic resolution. X-ray absorption spectroscopy (XAS) is a powerful tool in investigating the local coordination environment of SACs since it is element-specific and can provide accurate structural information at the subatomic level (∼0.01 Å).In this Account, we present our perspectives on the structural analysis of SACs from some unique features in the X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). We first highlight the importance of the XANES peak features in the sensitive analysis of SAC structures. Such analysis is illustrated to be even more useful in the joint applications of experimental and theoretical XAS. The inspection of the metal-metal (M-M) peak in Fourier transformed EXAFS (FT-EXAFS) spectra is a widely used method to identify the single-atom structure, but this method is not always reliable. Thus, we point out the importance of fitting EXAFS and the thorough interpretation of structural parameters such as coordination numbers (CNs, the number of neighboring atoms next to a chosen atom), bond distances, and the Debye-Waller factor (σ2). The small FT-EXAFS peak for the M-M shell is often ignored in the structural analysis of SACs. Here, it is demonstrated that a careful analysis of these small peaks could help more reliably analyze the SAC structure, and it would be particularly useful in the analysis of a single-atom alloy (SAA). Next, the usefulness of bond distance and σ2 analysis is highlighted, and such analysis is shown to be particularly helpful for the analysis of SAAs, which is rarely discussed in the literature. Given the advantage that XAS data can be collected under various conditions, we show that in situ XAS can provide important information about the catalytic mechanism of the SAC catalyst. In particular, we emphasize the significance of using an advanced in situ technique to extract detailed structural information that is difficult to obtain from regular XAS experiments. Finally, we highlight the importance of jointly using XAS with other complementary methods in a more complete understanding of the structure and properties of SACs. It is anticipated that with further development of XAS techniques and improved data analysis, XAS will become even more powerful in providing insights into the structure-property relationships of SACs, which can advance their practical applications.

2.
Small ; 17(27): e2005162, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33511737

RESUMO

Silver nanoclusters (NCs) are of significant interest owing to their interesting structural, electronic, and catalytic properties. Among these NCs, Ag25 (SR)18 is particularly attractive due to its identical geometry as its Au counterpart, Au25 (SR)18 . Herein, the site-specific electronic properties of Ag25 (SR)18 and Au25 (SR)18 using X-ray spectroscopy experiments and quantum simulations are presented. To overcome the final state effect observed in X-ray photoelectron spectroscopy (XPS), a unique method is developed to reliably analyze the charge transfer behavior of the NCs. Density functional theory calculations are combined with XPS to provide more insight into the electronic properties of the NCs. The differences in the XPS valence bands of these two NCs are further compared and interpreted using the relativistic effect. The first derivative of the X-ray absorption near-edge structure (XANES) spectrum is further used as a tool to sensitively probe the bonding properties of Ag25 (SR)18 . By combining the experimental XANES data and their site-specific quantum simulations, the large impact of the staple motif on the bonding properties of the NC is demonstrated. These findings highlight the unique electronic properties of each atomic site in Ag25 (SR)18 ; the effective X-ray analysis techniques developed here can offer new opportunities for the site-specific study of other NCs.


Assuntos
Ouro , Prata , Eletrônica , Espectroscopia Fotoeletrônica , Raios X
3.
J Phys Chem Lett ; 12(1): 257-275, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33332974

RESUMO

Thiolate-protected metal nanoclusters, which are smaller than 2 nm and have a specific number of metal atoms, have been greatly investigated in areas such as catalysis, sensing, and energy conversion because of their unique chemical, optical, structural, and electronic properties. Doping monometallic nanoclusters with another metal offers the opportunity to enhance these properties even further. The atomic structure of thiolate-protected bimetallic nanoclusters has been thoroughly studied using various X-ray methods, but the electronic structures of these complexes are often under-discussed. This Perspective summarizes works examining the electronic properties (charge states and energy levels) of these materials using density functional theory, square-wave voltammetry, UV-vis spectroscopy, and X-ray photoelectron spectroscopy. This information is then related to the catalytic activities of these complexes in various representative reactions (e.g., carbon-carbon coupling, hydrogenation, and oxidation). The significance of the structure-property relationship between the electronic properties and the catalytic performance of thiolate-protected bimetallic nanoclusters is demonstrated.

4.
Chem Soc Rev ; 50(1): 569-588, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33170202

RESUMO

Monometallic catalysts, in particular those containing noble metals, are frequently used in heterogeneous catalysis, but they are expensive, rare and the ability to tailor their structures and properties remains limited. Traditionally, alloy catalysts have been used instead that feature enhanced electronic and chemical properties at a reduced cost. Furthermore, the introduction of single metal atoms anchored onto supports provided another effective strategy to increase both the atomic efficiency and the chance of tailoring the properties. Most recently, single-atom alloy catalysts have been developed in which one metal is atomically dispersed throughout the catalyst via alloy bonding; such catalysts combine the traditional advantages of alloy catalysts with the new feature of tailoring properties achievable with single atom catalysts. This review will first outline the atomic scale structural analysis on single-atom alloys using microscopy and spectroscopy tools, such as high-angle annular dark field imaging-scanning transmission electron microscopy and extended X-ray absorption fine structure spectroscopy. Next, progress in research to understand the electronic properties of single-atom alloys using X-ray spectroscopy techniques and quantum calculations will be presented. The catalytic activities of single-atom alloys in a few representative reactions will be further discussed to demonstrate their structure-property relationships. Finally, future perspectives for single-atom alloy catalysts from the structural, electronic and reactivity aspects will be proposed.

5.
Nanoscale ; 12(33): 17245-17252, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32808949

RESUMO

TiO2 is one of the most widely used photocatalysts and photothermocatalysts. Tailoring their structure and electronic properties is crucial for the design of high-performance TiO2 catalysts. Herein, we report a strategy to significantly enhance the performance of TiO2 in the photothermocatalytic reduction of CO2 by doping high crystalline nano-TiO2 with tungsten. A variety of tungsten doping concentrations ranging from 2% to 10% were tested and they all showed enhanced catalytic activities. The 4% W-doped TiO2 exhibited the highest activity, which was 3.5 times greater than that of the undoped TiO2 reference. Structural characterization of these W-doped TiO2 catalysts indicated that W was successfully doped into the TiO2 lattice at relatively low dopant concentration. Synchrotron X-ray absorption spectroscopy at both the W L3- and Ti K-edges was further used to provide insight into the local structure and bonding properties of the catalysts. It was found that the replacement of Ti with W led to the formation of Ti vacancies in order to maintain the charge neutrality. Consequently, dangling oxygen and oxygen vacancies were produced that acted as catalytically active sites for the CO2 reduction. As the W doping concentration increased from 2% to 4%, more such active sites were generated which thus resulted in the enhancement of the catalytic activity. When the W doping concentration was further increased to 10%, the extra W species that cannot replace the Ti in the lattice aggregated to form WO3. Due to the lower conduction band of WO3, the catalytic O sites were deactivated and CO2 reduction was inhibited. This work presents a useful strategy for the development of highly efficient catalysts for CO2 reduction as well as new insights into the catalytic mechanism in cation-doped TiO2 photothermocatalysis.

6.
Adv Mater ; 32(44): e2002910, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32656812

RESUMO

Single-atom catalysts (SACs) have recently emerged as an exciting system in heterogeneous catalysis showing outstanding performance in many catalytic reactions. Single-atom catalytic sites alone are not stable and thus require stabilization from substrates. Crystalline porous materials such as zeolites and metal-organic frameworks (MOFs) are excellent substrates for SACs, offering high stability with the potential to further enhance their performance due to synergistic effects. This review features recent work on the structure, electronic, and catalytic properties of zeolite and MOF-protected SACs, offering atomic-scale views from the "inside" thanks to the subatomic resolution of synchrotron X-ray absorption spectroscopy (XAS). The extended X-ray absorption fine structure and associated methods will be shown to be powerful tools in identifying the single-atom site and can provide details into the coordination environment and bonding disorder of SACs. The X-ray absorption near-edge structure will be demonstrated as a valuable method in probing the electronic properties of SACs by analyzing the white line intensity, absorption edge shift, and pre-/postedge features. Emphasis is also placed on in situ/operando XAS using state-of-the-art equipment, which can unveil the changes in structure and properties of SACs during the dynamic catalytic processes in a highly sensitive and time-resolved manner.

7.
J Phys Chem Lett ; 11(6): 2219-2229, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32109069

RESUMO

CO oxidation is one of the most studied reactions in heterogeneous catalysis. It is present in air cleaning and automotive emission control. It also participates in the removal of CO from streams of hydrogen used in fuel cells. Because of the competitive adsorption of CO and O2 over active sites, the use of Pt-based catalysts for low-temperature CO oxidation remains a challenge. Recently, great progress has been made with catalysts containing Pt-Fe species because of the contribution of Fe species to O2 activation. The structure-activity relationship and reaction mechanisms have been investigated with various Pt-Fe catalysts. In this Perspective, we give a summary of the recent advances of low-temperature CO oxidation over Pt-Fe catalysts with a focus on the synergistic effect of Pt and Fe species in the CO and O2 activation of catalytic reactions. Future prospects for the preparation of highly effective Pt-Fe catalysts are also proposed.

8.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt B): 1664-1675, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28528876

RESUMO

In this review, we present a summary of how computer modeling has been used in the development of covalent-modifier drugs. Covalent-modifier drugs bind by forming a chemical bond with their target. This covalent binding can improve the selectivity of the drug for a target with complementary reactivity and result in increased binding affinities due to the strength of the covalent bond formed. In some cases, this results in irreversible inhibition of the target, but some targeted covalent inhibitor (TCI) drugs bind covalently but reversibly. Computer modeling is widely used in drug discovery, but different computational methods must be used to model covalent modifiers because of the chemical bonds formed. Structural and bioinformatic analysis has identified sites of modification that could yield selectivity for a chosen target. Docking methods, which are used to rank binding poses of large sets of inhibitors, have been augmented to support the formation of protein-ligand bonds and are now capable of predicting the binding pose of covalent modifiers accurately. The pKa's of amino acids can be calculated in order to assess their reactivity towards electrophiles. QM/MM methods have been used to model the reaction mechanisms of covalent modification. The continued development of these tools will allow computation to aid in the development of new covalent-modifier drugs. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.


Assuntos
Descoberta de Drogas , Modelos Moleculares , Penicilinas/química , Pirazóis/química , Pirimidinas/química , Adenina/análogos & derivados , Piperidinas
9.
Nano Lett ; 8(12): 4330-4, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19367930

RESUMO

The spectral position of light emission from an individual carbon nanotube is shown to depend on the location of the nanotube within the focal spot, while no such effect is present for macroscopic emitters. In addition, in contrast to macroscopic emitters, the measured line width from the nanotube emitter is independent of spectrometer entrance slit width. The effects are general for any nanoscale optical emitter with at least one dimension smaller than the optical diffraction limit.

10.
Nano Lett ; 7(6): 1485-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17488133

RESUMO

Resonant Raman spectroscopy of single carbon nanotubes suspended across trenches displays red-shifts of up to 30 meV of the electronic transition energies as a function of the surrounding dielectric environment. We develop a simple scaling relationship between the exciton binding energy and the external dielectric function and thus quantify the effect of screening. Our results imply that the underlying particle interaction energies change by hundreds of meV.


Assuntos
Transferência de Energia , Modelos Químicos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Simulação por Computador , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...