Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 7(3): 405-413, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702858

RESUMO

High-elevation ecosystems are among the few ecosystems worldwide that are not yet heavily invaded by non-native plants. This is expected to change as species expand their range limits upwards to fill their climatic niches and respond to ongoing anthropogenic disturbances. Yet, whether and how quickly these changes are happening has only been assessed in a few isolated cases. Starting in 2007, we conducted repeated surveys of non-native plant distributions along mountain roads in 11 regions from 5 continents. We show that over a 5- to 10-year period, the number of non-native species increased on average by approximately 16% per decade across regions. The direction and magnitude of upper range limit shifts depended on elevation across all regions. Supported by a null-model approach accounting for range changes expected by chance alone, we found greater than expected upward shifts at lower/mid elevations in at least seven regions. After accounting for elevation dependence, significant average upward shifts were detected in a further three regions (revealing evidence for upward shifts in 10 of 11 regions). Together, our results show that mountain environments are becoming increasingly exposed to biological invasions, emphasizing the need to monitor and prevent potential biosecurity issues emerging in high-elevation ecosystems.


Assuntos
Altitude , Ecossistema , Espécies Introduzidas , Plantas , Dispersão Vegetal
2.
Mol Phylogenet Evol ; 149: 106836, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32304826

RESUMO

Asparagaceae: Lomandroideae are a species-rich and economically important subfamily in the monocot order Asparagales, with a center of diversity in Australia. Lomandroideae are ecologically diverse, occupying mesic and arid biomes in Australia and possessing an array of key traits, including sexual dimorphism, storage organs and polyploidy that are potentially adaptive for survival in seasonally arid and fire-dependent habitats. The Lomandroideae phylogeny was reconstructed using maximum likelihood and Bayesian inference criteria, based on plastome data from genome-skimming to infer relationships. A fossil-calibrated chronogram provided a temporal framework for understanding trait transitions. Ancestral state reconstructions and phylogenetic comparative trait correlation analyses provided insights into the evolutionary and ecological drivers associated with Lomandroideae diversification. Lomandroideae diverged from the other Asparagaceae ca. 56.61 million years ago (95% highest posterior density values 70.31-45.34 million years) and the major lineages diversified since the Oligocene. The most recent common ancestor of the clade likely occupied the mesic biome, was hermaphroditic and geophytic. Biome occupancy transitions were correlated with polyploidy and the presence of storage roots. Polyploidy potentially serves as an "enabler" trait, generating novel phenotypes, which may confer tolerance to climatic ranges and soil conditions putatively required for expansion into and occupation of new arid biomes. Storage roots, as a key factor driving biome transitions, may have been associated with fire rather than with aridification events in the Australian flora. This study contributes significantly to our understanding of biome evolution by identifying polyploidy and storage organs as key factors associated with transitions in biome occupancy in this lineage.


Assuntos
Asparagaceae/genética , Evolução Biológica , Ecossistema , Poliploidia , Austrália , Teorema de Bayes , Diploide , Variação Genética , Funções Verossimilhança , Especificidade de Órgãos , Filogenia , Fatores de Tempo
3.
PLoS One ; 12(10): e0186259, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29084279

RESUMO

In Australia, Poaceae tribe Poeae are represented by 19 genera and 99 species, including economically and environmentally important native and introduced pasture grasses [e.g. Poa (Tussock-grasses) and Lolium (Ryegrasses)]. We used this tribe, which are well characterised in regards to morphological diversity and evolutionary relationships, to test the efficacy of DNA barcoding methods. A reference library was generated that included 93.9% of species in Australia (408 individuals, [Formula: see text] = 3.7 individuals per species). Molecular data were generated for official plant barcoding markers (rbcL, matK) and the nuclear ribosomal internal transcribed spacer (ITS) region. We investigated accuracy of specimen identifications using distance- (nearest neighbour, best-close match, and threshold identification) and tree-based (maximum likelihood, Bayesian inference) methods and applied species discovery methods (automatic barcode gap discovery, Poisson tree processes) based on molecular data to assess congruence with recognised species. Across all methods, success rate for specimen identification of genera was high (87.5-99.5%) and of species was low (25.6-44.6%). Distance- and tree-based methods were equally ineffective in providing accurate identifications for specimens to species rank (26.1-44.6% and 25.6-31.3%, respectively). The ITS marker achieved the highest success rate for specimen identification at both generic and species ranks across the majority of methods. For distance-based analyses the best-close match method provided the greatest accuracy for identification of individuals with a high percentage of "correct" (97.6%) and a low percentage of "incorrect" (0.3%) generic identifications, based on the ITS marker. For tribe Poeae, and likely for other grass lineages, sequence data in the standard DNA barcode markers are not variable enough for accurate identification of specimens to species rank. For recently diverged grass species similar challenges are encountered in the application of genetic and morphological data to species delimitations, with taxonomic signal limited by extensive infra-specific variation and shared polymorphisms among species in both data types.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA de Plantas/genética , Poaceae/genética , Austrália , Poaceae/classificação
4.
Syst Biol ; 63(2): 178-91, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335493

RESUMO

Reconstructing the biogeographic history of groups present in continuous arid landscapes is challenging due to the difficulties in defining discrete areas for analyses, and even more so when species largely overlap both in terms of geography and habitat preference. In this study, we use a novel approach to estimate ancestral areas for the small plant genus Centipeda. We apply continuous diffusion of geography by a relaxed random walk where each species is sampled from its extant distribution on an empirical distribution of time-calibrated species-trees. Using a distribution of previously published substitution rates of the internal transcribed spacer (ITS) for Asteraceae, we show how the evolution of Centipeda correlates with the temporal increase of aridity in the arid zone since the Pliocene. Geographic estimates of ancestral species show a consistent pattern of speciation of early lineages in the Lake Eyre region, with a division in more northerly and southerly groups since ∼840 ka. Summarizing the geographic slices of species-trees at the time of the latest speciation event (∼20 ka), indicates no presence of the genus in Australia west of the combined desert belt of the Nullabor Plain, the Great Victoria Desert, the Gibson Desert, and the Great Sandy Desert, or beyond the main continental shelf of Australia. The result indicates all western occurrences of the genus to be a result of recent dispersal rather than ancient vicariance. This study contributes to our understanding of the spatiotemporal processes shaping the flora of the arid zone, and offers a significant improvement in inference of ancestral areas for any organismal group distributed where it remains difficult to describe geography in terms of discrete areas.


Assuntos
Asteraceae/classificação , Filogenia , Filogeografia , Animais , Asteraceae/genética , Austrália , DNA Espaçador Ribossômico/genética
5.
Mol Phylogenet Evol ; 68(2): 239-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23558159

RESUMO

A species tree phylogeny of the Australian/New Zealand genus Centipeda (Asteraceae) is estimated based on nucleotide sequence data. We analysed sequences of nuclear ribosomal DNA (ETS, ITS) and three plasmid loci (ndhF, psbA-trnH, and trnL-F) using the multi-species coalescent module in BEAST. A total of 129 individuals from all 10 recognised species of Centipeda were sampled throughout the species distribution ranges, including two subspecies. We conclude that the inferred species tree topology largely conform previous assumptions on species relationships. Centipeda racemosa (Snuffweed) is the sister to remaining species, which is also the only consistently perennial representative in the genus. Centipeda pleiocephala (Tall Sneezeweed) and C. nidiformis (Cotton Sneezeweed) constitute a species pair, as does C. borealis and C. minima (Spreading Sneezeweed), all sharing the symplesiomorphic characters of spherical capitulum and convex receptacle with C. racemosa. Another species group comprising C. thespidioides (Desert Sneezeweed), C. cunninghamii (Old man weed, or Common sneeze-weed), C. crateriformis is well-supported but then include the morphologically aberrant C. aotearoana, all sharing the character of having capitula that mature more slowly relative the subtending shoot. Centipeda elatinoides takes on a weakly supported intermediate position between the two mentioned groups, and is difficult to relate to any of the former groups based on morphological characters.


Assuntos
Asteraceae/genética , Evolução Molecular , Filogenia , Asteraceae/classificação , Asteraceae/crescimento & desenvolvimento , Teorema de Bayes , Genes de Plantas , Genoma de Planta , Genomas de Plastídeos , Modelos Genéticos , Tipagem de Sequências Multilocus , Alinhamento de Sequência
6.
J Nat Prod ; 68(2): 282-4, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15730264

RESUMO

Chemical investigations of the crude MeOH extract of Physalis viscosa led to the identification of the novel acylated sucrose ester physaloside A (1). The structure of 1 was determined by 2D NMR analysis, and the absolute configuration was determined by chemical degradation and comparison with authentic standards.


Assuntos
Bactérias Gram-Positivas/efeitos dos fármacos , Physalis/química , Plantas Medicinais/química , Sacarose , Sacarose/análogos & derivados , Sacarose/isolamento & purificação , Austrália , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/química , Ésteres/isolamento & purificação , Ésteres/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Sacarose/química , Sacarose/farmacologia
7.
Phytochemistry ; 65(24): 3255-9, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15561191

RESUMO

An HTS campaign aimed at the identification of inhibitors of HIV integrase showed that the methanol extract from the buds of a Eucalyptus globoidea was active. Bioassay guided fractionation of this extract resulted in the purification and structural elucidation of the lignan, globoidnan A (1) as the only compound in the extract responsible for the inhibition of HIV integrase. The compound was found to inhibit the combined 3' processing and strand transfer activity of HIV integrase with an IC50=0.64 microM.


Assuntos
Eucalyptus/química , Inibidores de Integrase de HIV/isolamento & purificação , Lignanas/isolamento & purificação , Flores/química , Inibidores de Integrase de HIV/farmacologia , HIV-1/enzimologia , Lignanas/farmacologia , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...