Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 4996, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30479339

RESUMO

A key challenge of magnetometry lies in the simultaneous optimization of magnetic field sensitivity and maximum field range. In interferometry-based magnetometry, a quantum two-level system acquires a dynamic phase in response to an applied magnetic field. However, due to the 2π periodicity of the phase, increasing the coherent interrogation time to improve sensitivity reduces field range. Here we introduce a route towards both large magnetic field range and high sensitivity via measurements of the geometric phase acquired by a quantum two-level system. We experimentally demonstrate geometric-phase magnetometry using the electronic spin associated with the nitrogen vacancy (NV) color center in diamond. Our approach enables unwrapping of the 2π phase ambiguity, enhancing field range by 400 times. We also find additional sensitivity improvement in the nonadiabatic regime, and study how geometric-phase decoherence depends on adiabaticity. Our results show that the geometric phase can be a versatile tool for quantum sensing applications.

2.
Nat Commun ; 9(1): 2712, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006532

RESUMO

Magnetic skyrmions are two-dimensional non-collinear spin textures characterized by an integer topological number. Room-temperature skyrmions were recently found in magnetic multilayer stacks, where their stability was largely attributed to the interfacial Dzyaloshinskii-Moriya interaction. The strength of this interaction and its role in stabilizing the skyrmions is not yet well understood, and imaging of the full spin structure is needed to address this question. Here, we use a nitrogen-vacancy centre in diamond to measure a map of magnetic fields produced by a skyrmion in a magnetic multilayer under ambient conditions. We compute the manifold of candidate spin structures and select the physically meaningful solution. We find a Néel-type skyrmion whose chirality is not left-handed, contrary to preceding reports. We propose skyrmion tube-like structures whose chirality rotates through the film thickness. We show that NV magnetometry, combined with our analysis method, provides a unique tool to investigate this previously inaccessible phenomenon.

3.
Phys Rev Lett ; 120(24): 243604, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29956999

RESUMO

We observe coherent spin exchange between identical electronic spins in the solid state, a key step towards full quantum control of electronic spin registers in room temperature solids. In a diamond substrate, a single nitrogen vacancy (NV) center coherently couples to two adjacent S=1/2 dark electron spins via the magnetic dipolar interaction. We quantify NV-electron and electron-electron couplings via detailed spectroscopy, with good agreement to a model of strongly interacting spins. The electron-electron coupling enables an observation of coherent flip-flop dynamics between electronic spins in the solid state, which occur conditionally on the state of the NV. Finally, as a demonstration of coherent control, we selectively couple and transfer polarization between the NV and the pair of electron spins. Our observations enable the realization of fast quantum gate operations and quantum state transfer in a scalable, room temperature, quantum processor.

4.
Science ; 351(6275): 836-41, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26847544

RESUMO

Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/análise , Teoria Quântica , Sensibilidade e Especificidade
5.
Nat Nanotechnol ; 10(10): 859-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26258549

RESUMO

Optically detected magnetic resonance using nitrogen-vacancy (NV) colour centres in diamond is a leading modality for nanoscale magnetic field imaging, as it provides single electron spin sensitivity, three-dimensional resolution better than 1 nm (ref. 5) and applicability to a wide range of physical and biological samples under ambient conditions. To date, however, NV-diamond magnetic imaging has been performed using 'real-space' techniques, which are either limited by optical diffraction to ∼250 nm resolution or require slow, point-by-point scanning for nanoscale resolution, for example, using an atomic force microscope, magnetic tip, or super-resolution optical imaging. Here, we introduce an alternative technique of Fourier magnetic imaging using NV-diamond. In analogy with conventional magnetic resonance imaging (MRI), we employ pulsed magnetic field gradients to phase-encode spatial information on NV electronic spins in wavenumber or 'k-space' followed by a fast Fourier transform to yield real-space images with nanoscale resolution, wide field of view and compressed sensing speed-up.

6.
Nat Methods ; 12(8): 736-738, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26098019

RESUMO

We apply a quantum diamond microscope for detection and imaging of immunomagnetically labeled cells. This instrument uses nitrogen-vacancy (NV) centers in diamond for correlated magnetic and fluorescence imaging. Our device provides single-cell resolution and a field of view (∼1 mm(2)) two orders of magnitude larger than that of previous NV imaging technologies, enabling practical applications. To illustrate, we quantified cancer biomarkers expressed by rare tumor cells in a large population of healthy cells.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Fenômenos Magnéticos , Microscopia/instrumentação , Análise de Célula Única , Anticorpos/química , Biomarcadores Tumorais , Linhagem Celular Tumoral , Diagnóstico por Imagem/métodos , Diamante , Humanos , Células MCF-7 , Magnetismo , Microscopia/métodos , Microscopia de Fluorescência , Nanotecnologia/métodos , Nitrogênio/química , Teoria Quântica
7.
Phys Rev Lett ; 113(19): 197601, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25415924

RESUMO

We demonstrate a method of magnetic resonance imaging with single nuclear-spin sensitivity under ambient conditions. Our method employs isolated electronic-spin quantum bits (qubits) as magnetic resonance "reporters" on the surface of high purity diamond. These spin qubits are localized with nanometer-scale uncertainty, and their quantum state is coherently manipulated and measured optically via a proximal nitrogen-vacancy color center located a few nanometers below the diamond surface. This system is then used for sensing, coherent coupling, and imaging of individual proton spins on the diamond surface with angstrom resolution. Our approach may enable direct structural imaging of complex molecules that cannot be accessed from bulk studies. It realizes a new platform for probing novel materials, monitoring chemical reactions, and manipulation of complex systems on surfaces at a quantum level.


Assuntos
Imageamento por Ressonância Magnética/métodos , Prótons , Pontos Quânticos/química , Diamante/química , Teoria Quântica
8.
Nano Lett ; 14(11): 6443-8, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25333198

RESUMO

We demonstrate an all-optical method for magnetic sensing of individual molecules in ambient conditions at room temperature. Our approach is based on shallow nitrogen-vacancy (NV) centers near the surface of a diamond crystal, which we use to detect single paramagnetic molecules covalently attached to the diamond surface. The manipulation and readout of the NV centers is all-optical and provides a sensitive probe of the magnetic field fluctuations stemming from the dynamics of the electronic spins of the attached molecules. As a specific example, we demonstrate detection of a single paramagnetic molecule containing a gadolinium (Gd(3+)) ion. We confirm single-molecule resolution using optical fluorescence and atomic force microscopy to colocalize one NV center and one Gd(3+)-containing molecule. Possible applications include nanoscale and in vivo magnetic spectroscopy and imaging of individual molecules.

9.
Nat Nanotechnol ; 9(4): 279-84, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24658168

RESUMO

Magnetic resonance imaging (MRI) has revolutionized biomedical science by providing non-invasive, three-dimensional biological imaging. However, spatial resolution in conventional MRI systems is limited to tens of micrometres, which is insufficient for imaging on molecular scales. Here, we demonstrate an MRI technique that provides subnanometre spatial resolution in three dimensions, with single electron-spin sensitivity. Our imaging method works under ambient conditions and can measure ubiquitous 'dark' spins, which constitute nearly all spin targets of interest. In this technique, the magnetic quantum-projection noise of dark spins is measured using a single nitrogen-vacancy (NV) magnetometer located near the surface of a diamond chip. The distribution of spins surrounding the NV magnetometer is imaged with a scanning magnetic-field gradient. To evaluate the performance of the NV-MRI technique, we image the three-dimensional landscape of electronic spins at the diamond surface and achieve an unprecedented combination of resolution (0.8 nm laterally and 1.5 nm vertically) and single-spin sensitivity. Our measurements uncover electronic spins on the diamond surface that can potentially be used as resources for improved magnetic imaging. This NV-MRI technique is immediately applicable to diverse systems including imaging spin chains, readout of spin-based quantum bits, and determining the location of spin labels in biological systems.


Assuntos
Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Marcadores de Spin , Diamante/química , Imageamento por Ressonância Magnética/instrumentação , Sensibilidade e Especificidade
10.
Nature ; 496(7446): 486-9, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23619694

RESUMO

Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (for example, magnetic resonance imaging), or entail operating conditions that preclude application to living biological samples while providing submicrometre resolution (for example, scanning superconducting quantum interference device microscopy, electron holography and magnetic resonance force microscopy). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nanometres), using an optically detected magnetic field imaging array consisting of a nanometre-scale layer of nitrogen-vacancy colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the nitrogen-vacancy quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria. We also spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field microscopy allows parallel optical and magnetic imaging of multiple cells in a population with submicrometre resolution and a field of view in excess of 100 micrometres. Scanning electron microscope images of the bacteria confirm that the correlated optical and magnetic images can be used to locate and characterize the magnetosomes in each bacterium. Our results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks.


Assuntos
Bactérias/citologia , Diamante , Fenômenos Magnéticos , Viabilidade Microbiana , Microscopia/métodos , Bactérias/metabolismo , Diamante/química , Campos Magnéticos , Magnetossomos/química , Magnetossomos/metabolismo , Microscopia/instrumentação , Nanopartículas/análise , Nanopartículas/química , Nitrogênio
11.
Nat Commun ; 4: 1743, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23612284

RESUMO

Solid-state spin systems such as nitrogen-vacancy colour centres in diamond are promising for applications of quantum information, sensing and metrology. However, a key challenge for such solid-state systems is to realize a spin coherence time that is much longer than the time for quantum spin manipulation protocols. Here we demonstrate an improvement of more than two orders of magnitude in the spin coherence time (T2) of nitrogen-vacancy centres compared with previous measurements: T2≈0.6 s at 77 K. We employed dynamical decoupling pulse sequences to suppress nitrogen-vacancy spin decoherence, and found that T2 is limited to approximately half of the longitudinal spin relaxation time over a wide range of temperatures, which we attribute to phonon-induced decoherence. Our results apply to ensembles of nitrogen-vacancy spins, and thus could advance quantum sensing, enable squeezing and many-body entanglement, and open a path to simulating driven, interaction-dominated quantum many-body Hamiltonians.

12.
Phys Rev Lett ; 110(15): 157601, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25167312

RESUMO

Under ambient conditions, spin impurities in solid-state systems are found in thermally mixed states and are optically "dark"; i.e., the spin states cannot be optically controlled. Nitrogen-vacancy (NV) centers in diamond are an exception in that the electronic spin states are "bright"; i.e., they can be polarized by optical pumping, coherently manipulated with spin-resonance techniques, and read out optically, all at room temperature. Here we demonstrate a scheme to resonantly couple bright NV electronic spins to dark substitutional-nitrogen (P1) electronic spins by dressing their spin states with oscillating magnetic fields. This resonant coupling mechanism can be used to transfer spin polarization from NV spins to nearby dark spins and could be used to cool a mesoscopic bath of dark spins to near-zero temperature, thus providing a resource for quantum information and sensing, and aiding studies of quantum effects in many-body spin systems.

13.
Sci Rep ; 2: 865, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23155483

RESUMO

Correlative light and electron microscopy promises to combine molecular specificity with nanoscale imaging resolution. However, there are substantial technical challenges including reliable co-registration of optical and electron images, and rapid optical signal degradation under electron beam irradiation. Here, we introduce a new approach to solve these problems: imaging of stable optical cathodoluminescence emitted in a scanning electron microscope by nanoparticles with controllable surface chemistry. We demonstrate well-correlated cathodoluminescence and secondary electron images using three species of semiconductor nanoparticles that contain defects providing stable, spectrally-distinguishable cathodoluminescence. We also demonstrate reliable surface functionalization of the particles. The results pave the way for the use of such nanoparticles for targeted labeling of surfaces to provide nanoscale mapping of molecular composition, indicated by cathodoluminescence colour, simultaneously acquired with structural electron images in a single instrument.

14.
Nat Nanotechnol ; 7(5): 320-4, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22504708

RESUMO

The nitrogen-vacancy defect centre in diamond has potential applications in nanoscale electric and magnetic-field sensing, single-photon microscopy, quantum information processing and bioimaging. These applications rely on the ability to position a single nitrogen-vacancy centre within a few nanometres of a sample, and then scan it across the sample surface, while preserving the centre's spin coherence and readout fidelity. However, existing scanning techniques, which use a single diamond nanocrystal grafted onto the tip of a scanning probe microscope, suffer from short spin coherence times due to poor crystal quality, and from inefficient far-field collection of the fluorescence from the nitrogen-vacancy centre. Here, we demonstrate a robust method for scanning a single nitrogen-vacancy centre within tens of nanometres from a sample surface that addresses both of these concerns. This is achieved by positioning a single nitrogen-vacancy centre at the end of a high-purity diamond nanopillar, which we use as the tip of an atomic force microscope. Our approach ensures long nitrogen-vacancy spin coherence times (∼75 µs), enhanced nitrogen-vacancy collection efficiencies due to waveguiding, and mechanical robustness of the device (several weeks of scanning time). We are able to image magnetic domains with widths of 25 nm, and demonstrate a magnetic field sensitivity of 56 nT Hz(-1/2) at a frequency of 33 kHz, which is unprecedented for scanning nitrogen-vacancy centres.


Assuntos
Diamante/química , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Nitrogênio/química , Desenho de Equipamento
15.
Science ; 326(5950): 267-72, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19745117

RESUMO

Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.

16.
Nature ; 455(7213): 644-7, 2008 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-18833275

RESUMO

Detection of weak magnetic fields with nanoscale spatial resolution is an outstanding problem in the biological and physical sciences. For example, at a distance of 10 nm, the spin of a single electron produces a magnetic field of about 1 muT, and the corresponding field from a single proton is a few nanoteslas. A sensor able to detect such magnetic fields with nanometre spatial resolution would enable powerful applications, ranging from the detection of magnetic resonance signals from individual electron or nuclear spins in complex biological molecules to readout of classical or quantum bits of information encoded in an electron or nuclear spin memory. Here we experimentally demonstrate an approach to such nanoscale magnetic sensing, using coherent manipulation of an individual electronic spin qubit associated with a nitrogen-vacancy impurity in diamond at room temperature. Using an ultra-pure diamond sample, we achieve detection of 3 nT magnetic fields at kilohertz frequencies after 100 s of averaging. In addition, we demonstrate a sensitivity of 0.5 muT Hz(-1/2) for a diamond nanocrystal with a diameter of 30 nm.

17.
J Magn Reson ; 193(2): 274-85, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18550402

RESUMO

We describe the design and operation of an open-access, very-low-field, magnetic resonance imaging (MRI) system for in vivo hyperpolarized 3He imaging of the human lungs. This system permits the study of lung function in both horizontal and upright postures, a capability with important implications in pulmonary physiology and clinical medicine, including asthma and obesity. The imager uses a bi-planar B(0) coil design that produces an optimized 65 G (6.5 mT) magnetic field for 3He MRI at 210 kHz. Three sets of bi-planar coils produce the x, y, and z magnetic field gradients while providing a 79-cm inter-coil gap for the imaging subject. We use solenoidal Q-spoiled RF coils for operation at low frequencies, and are able to exploit insignificant sample loading to allow for pre-tuning/matching schemes and for accurate pre-calibration of flip angles. We obtain sufficient SNR to acquire 2D 3He images with up to 2.8mm resolution, and present initial 2D and 3D 3He images of human lungs in both supine and upright orientations. 1H MRI can also be performed for diagnostic and calibration reasons.


Assuntos
Hélio , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Pulmão/anatomia & histologia , Imageamento por Ressonância Magnética/instrumentação , Postura , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Imageamento Tridimensional/instrumentação , Isótopos
18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(1 Pt 1): 010301, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16907043

RESUMO

We report experimental studies of the effect of interstitial gas on mass-density segregation in a vertically vibrated mixture of equal-sized bronze and glass spheres. Sufficiently strong vibration in the presence of interstitial gas induces vertical segregation into sharply separated bronze and glass layers. We find that the segregated steady state (i.e., bronze or glass layer on top) is a sensitive function of gas pressure and viscosity, as well as vibration frequency and amplitude. In particular, we identify distinct regimes of behavior that characterize the change from bronze-on-top to glass-on-top steady state.

19.
Artigo em Inglês | MEDLINE | ID: mdl-20354575

RESUMO

We describe a prototype system built to allow open-access very-low-field MRI of human lungs using laser-polarized (3)He gas. The system employs an open four-coil electromagnet with an operational B(0) field of 4 mT, and planar gradient coils that generate gradient fields up to 0.18 G/cm in the x and y direction and 0.41 G/cm in the z direction. This system was used to obtain (1)H and (3)He phantom images and supine and upright (3)He images of human lungs. We include discussion on challenges unique to imaging at 50 -200 kHz, including noise filtering and compensation for narrow-bandwidth coils.

20.
Magn Reson Med ; 53(4): 745-9, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15799045

RESUMO

The human lung and its functions are extremely sensitive to gravity; however, the conventional high-field magnets used for most laser-polarized (3)He MRI of the human lung restrict subjects to lying horizontally. Imaging of human lungs using inhaled laser-polarized (3)He gas is demonstrated in an open-access very-low-magnetic-field (<5 mT) MRI instrument. This prototype device employs a simple, low-cost electromagnet, with an open geometry that allows variation of the orientation of the imaging subject in a two-dimensional plane. As a demonstration, two-dimensional lung images were acquired with 4-mm in-plane resolution from a subject in two orientations: lying supine and sitting in a vertical position with one arm raised. Experience with this prototype device will guide optimization of a second-generation very-low-field imager to enable studies of human pulmonary physiology as a function of subject orientation.


Assuntos
Hélio , Isótopos , Pulmão/anatomia & histologia , Imageamento por Ressonância Magnética/instrumentação , Administração por Inalação , Desenho de Equipamento , Humanos , Masculino , Pessoa de Meia-Idade , Postura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...