Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(18): e2310280, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38197525

RESUMO

Scaling up superconducting quantum circuits based on transmon qubits necessitates substantial enhancements in qubit coherence time. Over recent years, tantalum (Ta) has emerged as a promising candidate for transmon qubits, surpassing conventional counterparts in terms of coherence time. However, amorphous surface Ta oxide layer may introduce dielectric loss, ultimately placing a limit on the coherence time. In this study, a novel approach for suppressing the formation of tantalum oxide using an ultrathin magnesium (Mg) capping layer is presented. Synchrotron-based X-ray photoelectron spectroscopy studies demonstrate that oxide is confined to an extremely thin region directly beneath the Mg/Ta interface. Additionally, it is demonstrated that the superconducting properties of thin Ta films are improved following the Mg capping, exhibiting sharper and higher-temperature transitions to superconductive and magnetically ordered states. Moreover, an atomic-scale mechanistic understanding of the role of the capping layer in protecting Ta from oxidation is established based on computational modeling. This work provides valuable insights into the formation mechanism and functionality of surface tantalum oxide, as well as a new materials design principle with the potential to reduce dielectric loss in superconducting quantum materials. Ultimately, the findings pave the way for the realization of large-scale, high-performance quantum computing systems.

2.
Adv Sci (Weinh) ; 10(21): e2300921, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37166044

RESUMO

Over the past decades, superconducting qubits have emerged as one of the leading hardware platforms for realizing a quantum processor. Consequently, researchers have made significant effort to understand the loss channels that limit the coherence times of superconducting qubits. A major source of loss has been attributed to two level systems that are present at the material interfaces. It is recently shown that replacing the metal in the capacitor of a transmon with tantalum yields record relaxation and coherence times for superconducting qubits, motivating a detailed study of the tantalum surface. In this work, the chemical profile of the surface of tantalum films grown on c-plane sapphire using variable energy X-ray photoelectron spectroscopy (VEXPS) is studied. The different oxidation states of tantalum that are present in the native oxide resulting from exposure to air are identified, and their distribution through the depth of the film is measured. Furthermore, it is shown how the volume and depth distribution of these tantalum oxidation states can be altered by various chemical treatments. Correlating these measurements with detailed measurements of quantum devices may elucidate the underlying microscopic sources of loss.

3.
Nat Commun ; 6: 8903, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26561388

RESUMO

Surface chemistry and catalysis studies could significantly gain from the systematic variation of surface active sites, tested under the very same conditions. Curved crystals are excellent platforms to perform such systematics, which may in turn allow to better resolve fundamental properties and reveal new phenomena. This is demonstrated here for the carbon monoxide/platinum system. We curve a platinum crystal around the high-symmetry (111) direction and carry out photoemission scans on top. This renders the spatial core-level imaging of carbon monoxide adsorbed on a 'tunable' vicinal surface, allowing a straightforward visualization of the rich chemisorption phenomenology at steps and terraces. Through such photoemission images we probe a characteristic elastic strain variation at stepped surfaces, and unveil subtle stress-release effects on clean and covered vicinal surfaces. These results offer the prospect of applying the curved surface approach to rationally investigate the chemical activity of surfaces under real pressure conditions.

4.
Phys Rev Lett ; 111(12): 126401, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24093281

RESUMO

We report the momentum-resolved measurement of a two-dimensional electron gas at the LaTiO(3)/SrTiO(3) interface by angle-resolved photoemission spectroscopy (ARPES). Thanks to an advanced sample preparation technique, the orbital character of the conduction electrons and the electronic correlations can be accessed quantitatively as each unit cell layer is added. We find that all of these quantities change dramatically with distance from the interface. These findings open the way to analogous studies on other heterostructures, which are traditionally a forbidden field for ARPES.

5.
Phys Chem Chem Phys ; 15(43): 19019-23, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24097254

RESUMO

We report on the chemical adsorption mechanism of atomic oxygen on the Pt(111) surface using angle-resolved-photoemission spectroscopy (ARPES) and density functional calculations. The detailed band structure of Pt(111) from ARPES reveals that most of the bands near the Fermi level are surface-states. By comparing band maps of Pt and O/Pt, we identify that dxz (dyz) and dz(2) orbitals are strongly correlated in the surface-states around the symmetry point M and K, respectively. Additionally, we demonstrate that the s- or p-orbital of oxygen atoms hybridizes preferentially with the dxz (dyz) orbital near the M symmetry point. This weak hybridization occurs with minimal charge transfer.

6.
Nat Mater ; 12(10): 887-92, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23892785

RESUMO

Charge carriers in bilayer graphene are widely believed to be massive Dirac fermions that have a bandgap tunable by a transverse electric field. However, a full transport gap, despite its importance for device applications, has not been clearly observed in gated bilayer graphene, a long-standing puzzle. Moreover, the low-energy electronic structure of bilayer graphene is widely held to be unstable towards symmetry breaking either by structural distortions, such as twist, strain, or electronic interactions that can lead to various ground states. Which effect dominates the physics at low energies is hotly debated. Here we show both by direct band-structure measurements and by calculations that a native imperfection of bilayer graphene, a distribution of twists whose size is as small as ~0.1°, is sufficient to generate a completely new electronic spectrum consisting of massive and massless Dirac fermions. The massless spectrum is robust against strong electric fields, and has a unusual topology in momentum space consisting of closed arcs having an exotic chiral pseudospin texture, which can be tuned by varying the charge density. The discovery of this unusual Dirac spectrum not only complements the framework of massive Dirac fermions, widely relevant to charge transport in bilayer graphene, but also supports the possibility of valley Hall transport.

7.
Phys Rev Lett ; 110(3): 036804, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23373943

RESUMO

We investigate the atomic-scale tunneling characteristics of bilayer graphene on silicon carbide using the scanning tunneling microscopy. The high-resolution tunneling spectroscopy reveals an unexpected negative differential resistance (NDR) at the Dirac energy, which spatially varies within the single unit cell of bilayer graphene. The origin of NDR is explained by two near-gap van Hove singularities emerging in the electronic spectrum of bilayer graphene under a transverse electric field, which are strongly localized on two sublattices in different layers. Furthermore, defects near the tunneling contact are found to strongly impact on NDR through the electron interference. Our result provides an atomic-level understanding of quantum tunneling in bilayer graphene, and constitutes a useful step towards graphene-based tunneling devices.

8.
ACS Nano ; 5(3): 2298-306, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21322532

RESUMO

We elucidate how graphene bilayers form on Ir(111). Low-energy electron diffraction (LEED) reveals that the two graphene layers are not always rotationally aligned. Monitoring this misalignment during growth shows that second-layer islands nucleate between the existing layer and the substrate. This mechanism occurs both when C segregates from the Ir and when elemental C is deposited from above. Low-energy electron microscopy (LEEM) and angle-resolved photoemission spectroscopy (ARPES) show that second-layer nucleation occurs preferentially under the first-layer rotational variants that are more weakly bound to the substrate. New-layer nucleation tends to occur inhomogeneously at substrate defects. Thus new-layer nucleation should be rapid on substrates that weakly bind graphene, making growth unstable toward mound formation initiated at substrate defects. In contrast, stronger binding permits layer-by-layer growth, as for Ru(0001). ARPES shows that bilayer graphene has two slightly p-doped π-bands. The work function of bilayer graphene is dominated by the orientation of the bottom layer.


Assuntos
Cristalização/métodos , Grafite/química , Irídio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...