Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 145(9): 3203-3213, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35675908

RESUMO

While neuropathological examinations in patients who died from COVID-19 revealed inflammatory changes in cerebral white matter, cerebral MRI frequently fails to detect abnormalities even in the presence of neurological symptoms. Application of multi-compartment diffusion microstructure imaging (DMI), that detects even small volume shifts between the compartments (intra-axonal, extra-axonal and free water/CSF) of a white matter model, is a promising approach to overcome this discrepancy. In this monocentric prospective study, a cohort of 20 COVID-19 inpatients (57.3 ± 17.1 years) with neurological symptoms (e.g. delirium, cranial nerve palsies) and cognitive impairments measured by the Montreal Cognitive Assessment (MoCA test; 22.4 ± 4.9; 70% below the cut-off value <26/30 points) underwent DMI in the subacute stage of the disease (29.3 ± 14.8 days after positive PCR). A comparison of whole-brain white matter DMI parameters with a matched healthy control group (n = 35) revealed a volume shift from the intra- and extra-axonal space into the free water fraction (V-CSF). This widespread COVID-related V-CSF increase affected the entire supratentorial white matter with maxima in frontal and parietal regions. Streamline-wise comparisons between COVID-19 patients and controls further revealed a network of most affected white matter fibres connecting widespread cortical regions in all cerebral lobes. The magnitude of these white matter changes (V-CSF) was associated with cognitive impairment measured by the MoCA test (r = -0.64, P = 0.006) but not with olfactory performance (r = 0.29, P = 0.12). Furthermore, a non-significant trend for an association between V-CSF and interleukin-6 emerged (r = 0.48, P = 0.068), a prominent marker of the COVID-19 related inflammatory response. In 14/20 patients who also received cerebral 18F-FDG PET, V-CSF increase was associated with the expression of the previously defined COVID-19-related metabolic spatial covariance pattern (r = 0.57; P = 0.039). In addition, the frontoparietal-dominant pattern of neocortical glucose hypometabolism matched well to the frontal and parietal focus of V-CSF increase. In summary, DMI in subacute COVID-19 patients revealed widespread volume shifts compatible with vasogenic oedema, affecting various supratentorial white matter tracts. These changes were associated with cognitive impairment and COVID-19 related changes in 18F-FDG PET imaging.


Assuntos
COVID-19 , Substância Branca , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , COVID-19/complicações , Edema , Fluordesoxiglucose F18 , Humanos , Estudos Prospectivos , Água , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
2.
J Nucl Med ; 63(7): 1058-1063, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34649946

RESUMO

During the coronavirus disease 2019 (COVID-19) pandemic, Long COVID syndrome, which impairs patients through cognitive deficits, fatigue, and exhaustion, has become increasingly relevant. Its underlying pathophysiology, however, is unknown. In this study, we assessed cognitive profiles and regional cerebral glucose metabolism as a biomarker of neuronal function in outpatients with long-term neurocognitive symptoms after COVID-19. Methods: Outpatients seeking neurologic counseling with neurocognitive symptoms persisting for more than 3 mo after polymerase chain reaction (PCR)-confirmed COVID-19 were included prospectively between June 16, 2020, and January 29, 2021. Patients (n = 31; age, 53.6 ± 2.0 y) in the long-term phase after COVID-19 (202 ± 58 d after positive PCR) were assessed with a neuropsychologic test battery. Cerebral 18F-FDG PET imaging was performed in 14 of 31 patients. Results: Patients self-reported impaired attention, memory, and multitasking abilities (31/31), word-finding difficulties (27/31), and fatigue (24/31). Twelve of 31 patients could not return to the previous level of independence/employment. For all cognitive domains, average group results of the neuropsychologic test battery showed no impairment, but deficits (z score < -1.5) were present on a single-patient level mainly in the domain of visual memory (in 7/31; other domains ≤ 2/31). Mean Montreal Cognitive Assessment performance (27/30 points) was above the cutoff value for detection of cognitive impairment (<26 points), although 9 of 31 patients performed slightly below this level (23-25 points). In the subgroup of patients who underwent 18F-FDG PET, we found no significant changes of regional cerebral glucose metabolism. Conclusion: Long COVID patients self-report uniform symptoms hampering their ability to work in a relevant fraction. However, cognitive testing showed minor impairments only on a single-patient level approximately 6 mo after the infection, whereas functional imaging revealed no distinct pathologic changes. This clearly deviates from previous findings in subacute COVID-19 patients, suggesting that underlying neuronal causes are different and possibly related to the high prevalence of fatigue.


Assuntos
COVID-19 , Cérebro , Glucose , COVID-19/complicações , COVID-19/psicologia , Cérebro/metabolismo , Fadiga , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Humanos , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Síndrome de COVID-19 Pós-Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...