Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Math Biosci ; 345: 108778, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033503

RESUMO

We present a blood ethanol concentration compartment model which utilizes an animal's ethanol intake, food intake, and weight to predict the animal's blood ethanol concentration at any given time. By incorporating the food digestion process into the model we can predict blood ethanol concentration levels over time for a variety of drinking and eating scenarios. The model is calibrated and validated using data from cohorts of male monkeys, and is able to capture blood ethanol concentration kinetics of the monkeys from a variety of drinking behavior classifications.


Assuntos
Consumo de Bebidas Alcoólicas , Concentração Alcoólica no Sangue , Animais , Etanol , Alimentos , Masculino
2.
Alcohol Clin Exp Res ; 45(4): 689-696, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33616217

RESUMO

BACKGROUND: Phosphatidylethanol (PEth) homologs are ethanol metabolites used to identify and monitor alcohol drinking in humans. In this study, we measured levels of the 2 most abundant homologs, PEth 16:0/18:1 and PEth 16:0/18:2, in whole blood samples from rhesus macaque monkeys that drank ethanol daily ad libitum to assess the relationship between PEth levels and recent ethanol exposure in this animal model. METHODS: Blood samples were obtained from The Monkey Alcohol Tissue Research Resource. The monkeys were first induced to consume 4% (w/v) ethanol in water from a panel attached to their home cage. Then, monkeys were allowed to drink ethanol and water ad libitum 22 h daily for 12 months and the daily amount of ethanol each monkey consumed was measured. Whole, uncoagulated blood was collected from each animal at the end of the entire experimental procedure. PEth 16:0/18:1 and PEth 16:0/18:2 levels were analyzed by HPLC with tandem mass spectrometry, and the ethanol consumed during the preceding 14 days was measured. Combined PEth was the sum of the concentrations of both homologs. RESULTS: Our results show that (1) PEth accumulates in the blood of rhesus monkeys after ethanol consumption; (2) PEth homolog levels were correlated with the daily average ethanol intake during the 14-day period immediately preceding blood collection; (3) the application of established human PEth 16:0/18:1 cutoff concentrations indicative of light social or no ethanol consumption (<20 ng/ml), moderate ethanol consumption (≥ 20 and < 200 ng/ml) and heavy ethanol consumption (≥ 200 ng/ml) predicted significantly different ethanol intake in these animals. PEth homologs were not detected in ethanol-naïve controls. CONCLUSIONS: This study confirms that PEth is a sensitive biomarker for ethanol consumption in rhesus macaque monkeys. This nonhuman primate model may prove useful in evaluating sources of variability previously shown to exist between ethanol consumption and PEth homolog levels among humans.


Assuntos
Consumo de Bebidas Alcoólicas/sangue , Glicerofosfolipídeos/sangue , Sequência de Aminoácidos , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Sequência Conservada , Etanol/administração & dosagem , Humanos , Macaca mulatta , Masculino , Fosfolipase D/química
3.
Alcohol ; 91: 53-59, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33358984

RESUMO

Chronic heavy alcohol use is often associated with reduced bone mineral density and altered bone turnover. However, the dose response effects of ethanol on bone turnover have not been established. This study examined the effects of graded increases of ethanol consumption on biochemical markers of bone turnover in young adult male cynomolgus macaques (Macaca fascicularis). For this study, 6.6-year-old (95% CI: 6.5, 6.7) male macaques were subjected to three 30-day sessions of increased ethanol intake over a 90-day interval. During the first 30 days, the monkeys drank a predetermined volume of ethanol corresponding to 0.5 g/kg/day, followed by 1.0 g/kg/day and 1.5 g/kg/day. Osteocalcin, a marker of bone formation, and carboxyterminal cross-linking telopeptide of type 1 collagen (CTX), a marker of resorption, were measured during each 30-day session. In addition, the ratio of osteocalcin to CTX was determined as a surrogate measure of global turnover balance. Mean osteocalcin decreased by 2.6 ng/mL (1.8, 3.5) for each one-half unit (0.5 g/kg/day) increase in dose (p < 0.001). Mean CTX decreased by 0.13 ng/mL (0.06, 0.20) for each one-half unit increase in dose (p < 0.001). Furthermore, there was an inverse relationship between dose and the ratio of osteocalcin to CTX, such that the mean ratio decreased by 0.9 (0.3, 1.5) for each one-half unit increase in dose (p = 0.01). In summary, male cynomolgus macaques had decreased blood osteocalcin and CTX, and osteocalcin to CTX ratio during the 90-day interval of graded increases in ethanol consumption, indicative of reduced bone turnover and negative turnover balance, respectively. These findings suggest that over the range ingested, ethanol resulted in a linear decrease in bone turnover. Furthermore, the negative bone turnover balance observed is consistent with reported effects of chronic alcohol intake on the skeleton.


Assuntos
Consumo de Bebidas Alcoólicas , Densidade Óssea , Remodelação Óssea , Etanol/administração & dosagem , Animais , Biomarcadores , Colágeno Tipo I/metabolismo , Relação Dose-Resposta a Droga , Macaca fascicularis , Masculino , Osteocalcina/metabolismo , Peptídeos/metabolismo
4.
J Pharmacol Exp Ther ; 375(2): 258-267, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32873623

RESUMO

The efficacy of short-term treatment with mifepristone (MIFE), a high-affinity, nonselective glucocorticoid receptor antagonist, to reduce ethanol drinking was tested in a rhesus macaque model. Stable individual daily ethanol intakes were established, ranging from 1.6 to 4.0 g/kg per day (n = 9 monkeys). After establishment of chronic ethanol intake, a MIFE dosing regimen that modeled a study of rodent drinking and human alcohol craving was evaluated. Three doses of MIFE (17, 30, and 56 mg/kg per day) were each administered for four consecutive days. Both 30 and 56 mg/kg decreased ethanol intake compared with baseline drinking levels without a change in water intake. The dose of 56 mg/kg per day of MIFE produced the largest reduction in ethanol self-administration, with the average intake at 57% of baseline intakes. Cortisol was elevated during MIFE dosing, and a mediation analysis revealed that the effect on ethanol drinking was fully mediated through cortisol. During a forced abstinence phase, access to 1.5 g/kg ethanol resulted in relapse in all drinkers and was not altered by treatment with 56 mg/kg MIFE. Overall, these results show that during active drinking MIFE is efficacious in reducing heavy alcohol intake in a monkey model, an effect that was related to MIFE-induced increase in cortisol. However, MIFE treatment did not eliminate ethanol drinking. Further, cessation of MIFE treatment resulted in a rapid return to baseline intakes, and MIFE was not effective in preventing a relapse during early abstinence. SIGNIFICANCE STATEMENT: Mifepristone reliably decreases average daily ethanol self-administration in a nonhuman primate model. This effect was mediated by cortisol, was most effective during open-access conditions, and did not prevent or reduce relapse drinking.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Mifepristona/farmacologia , Animais , Ingestão de Líquidos/efeitos dos fármacos , Macaca mulatta , Masculino , Mifepristona/uso terapêutico , Autoadministração
5.
Alcohol Clin Exp Res ; 44(2): 470-478, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31840818

RESUMO

BACKGROUND: Genome-wide profiling to examine brain transcriptional features associated with excessive ethanol (EtOH) consumption has been applied to a variety of species including rodents, nonhuman primates (NHPs), and humans. However, these data were obtained from cross-sectional samples which are particularly vulnerable to individual variation when obtained from small outbred populations typical of human and NHP studies. In the current study, a novel within-subject design was used to examine the effects of voluntary EtOH consumption on prefrontal cortex (PFC) gene expression in a NHP model. METHODS: Two cohorts of cynomolgus macaques (n = 23) underwent a schedule-induced polydipsia procedure to establish EtOH self-administration followed by 6 months of daily open access to EtOH (4% w/v) and water. Individual daily EtOH intakes ranged from an average of 0.7 to 3.7 g/kg/d. Dorsal lateral PFC area 46 (A46) brain biopsies were collected in EtOH-naïve and control monkeys; contralateral A46 biopsies were collected from the same monkeys following the 6 months of fluid consumption. Gene expression changes were assessed using RNA-Seq paired analysis, which allowed for correction of individual baseline differences in gene expression. RESULTS: A total of 675 genes were significantly down-regulated following EtOH consumption; these were functionally enriched for immune response, cell adhesion, plasma membrane, and extracellular matrix. A total of 567 genes that were up-regulated following EtOH consumption were enriched in microRNA target sites and included target sites associated with Toll-like receptor pathways. The differentially expressed genes were also significantly enriched in transcription factor binding sites. CONCLUSIONS: The data presented here are the first to use a longitudinal biopsy strategy to examine how chronic EtOH consumption affects gene expression in the primate PFC. Prominent effects were seen in both cell adhesion and neuroimmune pathways; the latter contained both pro- and antiinflammatory genes. The data also indicate that changes in miRNAs and transcription factors may be important epigenetic regulators of EtOH consumption.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Etanol/administração & dosagem , Perfilação da Expressão Gênica/métodos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Animais , Expressão Gênica , Macaca fascicularis , Masculino , Autoadministração
6.
Alcohol Clin Exp Res ; 43(12): 2494-2503, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31557335

RESUMO

BACKGROUND: Chronic heavy alcohol consumption is an established risk factor for bone fracture, but comorbidities associated with alcohol intake may contribute to increased fracture rates in alcohol abusers. To address the specific effects of alcohol on bone, we used a nonhuman primate model and evaluated voluntary alcohol consumption on: (i) global markers of bone turnover in blood and (ii) cancellous bone mass, density, microarchitecture, turnover, and microdamage in lumbar vertebra. METHODS: Following a 4-month induction period, 6-year-old male rhesus macaques (Macaca mulatta, n = 13) voluntarily self-administered water or ethanol (EtOH; 4% w/v) for 22 h/d, 7 d/wk, for a total of 12 months. Control animals (n = 9) consumed an isocaloric maltose-dextrin solution. Tetracycline hydrochloride was administered orally 17 and 3 days prior to sacrifice to label mineralizing bone surfaces. Global skeletal response to EtOH was evaluated by measuring plasma osteocalcin and carboxyterminal collagen cross-links (CTX). Local response was evaluated in lumbar vertebra using dual-energy X-ray absorptiometry, microcomputed tomography, static and dynamic histomorphometry, and histological assessment of microdamage. RESULTS: Monkeys in the EtOH group consumed an average of 2.8 ± 0.2 (mean ± SE) g/kg/d of EtOH (30 ± 2% of total calories), resulting in an average blood EtOH concentration of 88.3 ± 8.8 mg/dl 7 hours after the session onset. Plasma CTX and osteocalcin tended to be lower in EtOH-consuming monkeys compared to controls. Significant differences in bone mineral density in lumbar vertebrae 1 to 4 were not detected with treatment. However, cancellous bone volume fraction (in cores biopsied from the central region of the third vertebral body) was lower in EtOH-consuming monkeys compared to controls. Furthermore, EtOH-consuming monkeys had lower osteoblast perimeter and mineralizing perimeter, no significant difference in osteoclast perimeter, and higher bone marrow adiposity than controls. No significant differences between groups were detected in microcrack density (2nd lumbar vertebra). CONCLUSIONS: Voluntary chronic heavy EtOH consumption reduces cancellous bone formation in lumbar vertebra by decreasing osteoblast-lined bone perimeter, a response associated with an increase in bone marrow adiposity.


Assuntos
Adiposidade/fisiologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Medula Óssea/fisiopatologia , Osso Esponjoso/crescimento & desenvolvimento , Etanol/efeitos adversos , Animais , Densidade Óssea/efeitos dos fármacos , Colágeno/sangue , Etanol/sangue , Vértebras Lombares/efeitos dos fármacos , Macaca mulatta , Masculino , Osteocalcina/sangue
7.
Sci Rep ; 9(1): 7847, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127176

RESUMO

It is well established that chronic heavy alcohol drinking (CHD) results in significant organ damage, increased susceptibility to infections, and poor outcomes following injury. In contrast, chronic moderate drinking (CMD) has been associated with improved cardiovascular health and immunity. These differential outcomes have been linked to alterations in both innate and adaptive branches of the immune system; however, the mechanisms remain poorly understood. To address this question, we determined the impact of chronic drinking on the transcriptional and functional responses of peripheral blood mononuclear cells (PBMC) collected from male rhesus macaques classified as CMD or CHD after 12 months of voluntary ethanol self-administration. Our analysis suggests that chronic alcohol drinking, regardless of dose alters resting transcriptomes of PBMC, with the largest impact seen in innate immune cells. These transcriptional changes are partially explained by alterations in microRNA profiles. Additionally, chronic alcohol drinking is associated with a dose dependent heightened inflammatory profiled at resting and following LPS stimulation. Moreover, we observed a dose-dependent shift in the kinetics of transcriptional responses to LPS. These findings may explain the dichotomy in clinical and immunological outcomes observed with moderate versus heavy alcohol drinking.


Assuntos
Alcoolismo/complicações , Etanol/toxicidade , Leucócitos Mononucleares/efeitos dos fármacos , Índice de Gravidade de Doença , Imunidade Adaptativa/efeitos dos fármacos , Alcoolismo/sangue , Alcoolismo/diagnóstico , Alcoolismo/imunologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Etanol/administração & dosagem , Humanos , Imunidade Inata/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Macaca mulatta , Masculino , RNA-Seq , Autoadministração/efeitos adversos , Transcriptoma/efeitos dos fármacos , Transcriptoma/imunologia
8.
Alcohol Clin Exp Res ; 43(2): 250-261, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30549282

RESUMO

BACKGROUND: Gestational ethanol (EtOH) exposure is associated with multiple developmental abnormalities, collectively termed fetal alcohol spectrum disorder (FASD). While the majority of women abstain from EtOH following knowledge of pregnancy, one contributing factor to the high FASD prevalence is that pregnancy is not detected until 4 to 6 weeks. Thus, EtOH consumption continues during the initial stages of fetal development. METHODS: An experimental protocol is described in which rhesus macaques self-administer 1.5 g/kg/d EtOH (or isocaloric maltose dextrin) prior to pregnancy and through the first 60 days of a 168-day gestation term. Menstrual cycles were monitored, including measurements of circulating estradiol and progesterone levels. The latency to consume 1.5 g/kg EtOH and blood EtOH concentration (BEC) was measured. RESULTS: Twenty-eight fetuses (14 EtOH and 14 controls) were generated in this study. EtOH did not affect menstrual cycles or the probability of successful breeding. No EtOH-induced gross adverse effects on pregnancy were observed. Individual variability in latency to complete drinking translated into variability in BEC, measured 90 minutes following session start. Drinking latencies in controls and EtOH drinkers were longer in the second gestational month than in the first. All pregnancies reached the planned experimental time point of G85, G110, or G135, when in utero MRIs were performed, fetuses were delivered by caesarean section, and brains were evaluated with ex vivo procedures, including slice electrophysiology. Fetal tissues have been deposited to the Monkey Alcohol Tissue Research Resource. CONCLUSIONS: This FASD model takes advantage of the similarities between humans and rhesus macaques in gestational length relative to brain development, as well as similarities in EtOH self-administration and metabolism. The daily 1.5 g/kg dose of EtOH through the first trimester does not influence pregnancy success rates. However, pregnancy influences drinking behavior during the second month of pregnancy. Future publications using this model will describe the effect of early-gestation EtOH exposure on anatomical and functional brain development at subsequent gestational ages.


Assuntos
Modelos Animais de Doenças , Etanol/efeitos adversos , Desenvolvimento Fetal/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Concentração Alcoólica no Sangue , Estudos de Casos e Controles , Estradiol/sangue , Feminino , Macaca mulatta , Ciclo Menstrual/efeitos dos fármacos , Gravidez , Primeiro Trimestre da Gravidez/efeitos dos fármacos , Progesterona/sangue
9.
Front Genet ; 9: 323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210527

RESUMO

We previously identified a region on chromosome 1 that harbor quantitative trait loci (QTLs) with large effects on alcohol withdrawal risk using both chronic and acute models in mice. Here, using newly created and existing QTL interval-specific congenic (ISC) models, we report the first evidence that this region harbors two distinct alcohol withdrawal QTLs (Alcw11and Alcw12), which underlie 13% and 3-6%, respectively, of the genetic variance in alcohol withdrawal severity measured using the handling-induced convulsion. Our results also precisely localize Alcw11 and Alcw12 to discreet chromosome regions (syntenic with human 1q23.1-23.3) that encompass a limited number of genes with validated genotype-dependent transcript expression and/or non-synonymous sequence variation that may underlie QTL phenotypic effects. ISC analyses also implicate Alcw11and Alcw12 in withdrawal-induced anxiety-like behavior, representing the first evidence for their broader roles in alcohol withdrawal beyond convulsions; but detect no evidence for Alcw12 involvement in ethanol conditioned place preference (CPP) or consumption. Our data point to high-quality candidates for Alcw12, including genes involved in mitochondrial respiration, spatial buffering, and neural plasticity, and to Kcnj9 as a high-quality candidate for Alcw11. Our studies are the first to show, using two null mutant models on different genetic backgrounds, that Kcnj9-/- mice demonstrate significantly less severe alcohol withdrawal than wildtype littermates using acute and repeated exposure paradigms. We also demonstrate that Kcnj9-/- voluntarily consume significantly more alcohol (20%, two-bottle choice) than wildtype littermates. Taken together with evidence implicating Kcnj9 in ethanol CPP, our results support a broad role for this locus in ethanol reward and withdrawal phenotypes. In summary, our results demonstrate two distinct chromosome 1 QTLs that significantly affect risk for ethanol withdrawal, and point to their distinct unique roles in alcohol reward phenotypes.

10.
Alcohol ; 72: 19-31, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30213503

RESUMO

This review summarizes the proceedings of a symposium presented at the "Alcoholism and Stress: A Framework for Future Treatment Strategies" conference held in Volterra, Italy on May 9-12, 2017. Psychiatric diseases, including alcohol-use disorders (AUDs), are influenced through complex interactions of genes, neurobiological pathways, and environmental influences. A better understanding of the common neurobiological mechanisms underlying an AUD necessitates an integrative approach, involving a systematic assessment of diverse species and phenotype measures. As part of the World Congress on Stress and Alcoholism, this symposium provided a detailed account of current strategies to identify mechanisms underlying the development and progression of AUDs. Dr. Sean Farris discussed the integration and organization of transcriptome and postmortem human brain data to identify brain regional- and cell type-specific differences related to excessive alcohol consumption that are conserved across species. Dr. Brien Riley presented the results of a genome-wide association study of DSM-IV alcohol dependence; although replication of genetic associations with alcohol phenotypes in humans remains challenging, model organism studies show that COL6A3, KLF12, and RYR3 affect behavioral responses to ethanol, and provide substantial evidence for their role in human alcohol-related traits. Dr. Rob Williams expanded upon the systematic characterization of extensive genetic-genomic resources for quantifying and clarifying phenotypes across species that are relevant to precision medicine in human disease. The symposium concluded with Dr. Robert Hitzemann's description of transcriptome studies in a mouse model selectively bred for high alcohol ("binge-like") consumption and a non-human primate model of long-term alcohol consumption. Together, the different components of this session provided an overview of systems-based approaches that are pioneering the experimental prioritization and validation of novel genes and gene networks linked with a range of behavioral phenotypes associated with stress and AUDs.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Transtornos Relacionados ao Uso de Álcool/genética , Animais , Colágeno Tipo VI/genética , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Fatores de Transcrição Kruppel-Like/genética , Macaca , Camundongos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
11.
Addict Biol ; 23(1): 196-205, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28247455

RESUMO

This is the first description of the relationship between chronic ethanol self-administration and the brain transcriptome in a non-human primate (rhesus macaque). Thirty-one male animals self-administered ethanol on a daily basis for over 12 months. Gene transcription was quantified with RNA-Seq in the central nucleus of the amygdala (CeA) and cortical Area 32. We constructed coexpression and cosplicing networks, and we identified areas of preservation and areas of differentiation between regions and network types. Correlations between intake and transcription included largely distinct gene sets and annotation categories across brain regions and between expression and splicing; positive and negative correlations were also associated with distinct annotation groups. Membrane, synaptic and splicing annotation categories were over-represented in the modules (gene clusters) enriched in positive correlations (CeA); our cosplicing analysis further identified the genes affected only at the exon inclusion level. In the CeA coexpression network, we identified Rab6b, Cdk18 and Igsf21 among the intake-correlated hubs, while in the Area 32, we identified a distinct hub set that included Ppp3r1 and Myeov2. Overall, the data illustrate that excessive ethanol self-administration is associated with broad expression and splicing mechanisms that involve membrane and synapse genes.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Encéfalo/metabolismo , Depressores do Sistema Nervoso Central/administração & dosagem , Etanol/administração & dosagem , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Calcineurina/genética , Núcleo Central da Amígdala/metabolismo , Córtex Cerebral/metabolismo , Quinases Ciclina-Dependentes/genética , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macaca mulatta , Masculino , Proteínas do Tecido Nervoso/genética , Splicing de RNA , Autoadministração , Proteínas rab de Ligação ao GTP/genética
12.
Front Behav Neurosci ; 11: 55, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386222

RESUMO

Attentional set-shifting ability is an executive function underling cognitive flexibility in humans and animals. In humans, this function is typically observed during a single experimental session where dimensions of playing cards are used to measure flexibility in the face of changing rules for reinforcement (i.e., the Wisconsin Card Sorting Test (WCST)). In laboratory animals, particularly non-human primates, variants of the WCST involve extensive training and testing on a series of dimensional discriminations, usually in social isolation. In the present study, a novel experimental approach was used to assess attentional set-shifting simultaneously in 12 rhesus monkeys. Specifically, monkeys living in individual cages but in the same room were trained at the same time each day in a set-shifting task in the same housing environment. As opposed to the previous studies, each daily session began with a simple single-dimension discrimination regardless of the animal's performance on the previous session. A total of eight increasingly difficult, discriminations (sets) were possible in each daily 45 min session. Correct responses were reinforced under a second-order schedule of flavored food pellet delivery, and criteria for completing a set was 12 correct trials out of a running total of 15 trials. Monkeys progressed through the sets at their own pace and abilities. The results demonstrate that all 12 monkeys acquired the simple discrimination (the first set), but individual differences in the ability to progress through all eight sets were apparent. A performance index (PI) that encompassed progression through the sets, errors and session duration was calculated and used to rank each monkey's performance in relation to each other. Overall, this version of a set-shifting task results in an efficient assessment of reliable differences in cognitive flexibility in a group of monkeys.

13.
Alcohol Clin Exp Res ; 41(3): 626-636, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28055132

RESUMO

BACKGROUND: The Monkey Alcohol Tissue Research Resource (MATRR) is a repository and analytics platform for detailed data derived from well-documented nonhuman primate (NHP) alcohol self-administration studies. This macaque model has demonstrated categorical drinking norms reflective of human drinking populations, resulting in consumption pattern classifications of very heavy drinking (VHD), heavy drinking (HD), binge drinking (BD), and low drinking (LD) individuals. Here, we expand on previous findings that suggest ethanol drinking patterns during initial drinking to intoxication can reliably predict future drinking category assignment. METHODS: The classification strategy uses a machine-learning approach to examine an extensive set of daily drinking attributes during 90 sessions of induction across 7 cohorts of 5 to 8 monkeys for a total of 50 animals. A Random Forest classifier is employed to accurately predict categorical drinking after 12 months of self-administration. RESULTS: Predictive outcome accuracy is approximately 78% when classes are aggregated into 2 groups, "LD and BD" and "HD and VHD." A subsequent 2-step classification model distinguishes individual LD and BD categories with 90% accuracy and between HD and VHD categories with 95% accuracy. Average 4-category classification accuracy is 74%, and provides putative distinguishing behavioral characteristics between groupings. CONCLUSIONS: We demonstrate that data derived from the induction phase of this ethanol self-administration protocol have significant predictive power for future ethanol consumption patterns. Importantly, numerous predictive factors are longitudinal, measuring the change of drinking patterns through 3 stages of induction. Factors during induction that predict future heavy drinkers include being younger at the time of first intoxication and developing a shorter latency to first ethanol drink. Overall, this analysis identifies predictive characteristics in future very heavy drinkers that optimize intoxication, such as having increasingly fewer bouts with more drinks. This analysis also identifies characteristic avoidance of intoxicating topographies in future low drinkers, such as increasing number of bouts and waiting longer before the first ethanol drink.


Assuntos
Intoxicação Alcoólica/classificação , Intoxicação Alcoólica/psicologia , Etanol/administração & dosagem , Aprendizado de Máquina , Motivação/efeitos dos fármacos , Intoxicação Alcoólica/etiologia , Animais , Etanol/efeitos adversos , Feminino , Previsões , Haplorrinos , Macaca mulatta , Masculino , Motivação/fisiologia , Autoadministração
14.
PLoS One ; 11(3): e0152581, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27031617

RESUMO

Methamphetamine (MA) and neurotransmitter precursors and metabolites such as tyramine, octopamine, and ß-phenethylamine stimulate the G protein-coupled trace amine-associated receptor 1 (TAAR1). TAAR1 has been implicated in human conditions including obesity, schizophrenia, depression, fibromyalgia, migraine, and addiction. Additionally TAAR1 is expressed on lymphocytes and astrocytes involved in inflammation and response to infection. In brain, TAAR1 stimulation reduces synaptic dopamine availability and alters glutamatergic function. TAAR1 is also expressed at low levels in heart, and may regulate cardiovascular tone. Taar1 knockout mice orally self-administer more MA than wild type and are insensitive to its aversive effects. DBA/2J (D2) mice express a non-synonymous single nucleotide polymorphism (SNP) in Taar1 that does not respond to MA, and D2 mice are predisposed to high MA intake, compared to C57BL/6 (B6) mice. Here we demonstrate that endogenous agonists stimulate the recombinant B6 mouse TAAR1, but do not activate the D2 mouse receptor. Progeny of the B6XD2 (BxD) family of recombinant inbred (RI) strains have been used to characterize the genetic etiology of diseases, but contrary to expectations, BXDs derived 30-40 years ago express only the functional B6 Taar1 allele whereas some more recently derived BXD RI strains express the D2 allele. Data indicate that the D2 mutation arose subsequent to derivation of the original RIs. Finally, we demonstrate that SNPs in human TAAR1 alter its function, resulting in expressed, but functional, sub-functional and non-functional receptors. Our findings are important for identifying a predisposition to human diseases, as well as for developing personalized treatment options.


Assuntos
Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Administração Oral , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , AMP Cíclico/metabolismo , Dopamina/metabolismo , Células HEK293 , Haplótipos , Humanos , Metanfetamina/administração & dosagem , Metanfetamina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Microscopia Confocal , Locos de Características Quantitativas , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
15.
Front Genet ; 7: 218, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28096806

RESUMO

Genetic factors significantly affect vulnerability to alcohol dependence (alcoholism). We previously identified quantitative trait loci on distal mouse chromosome 1 with large effects on predisposition to alcohol physiological dependence and associated withdrawal following both chronic and acute alcohol exposure in mice (Alcdp1 and Alcw1, respectively). We fine-mapped these loci to a 1.1-1.7 Mb interval syntenic with human 1q23.2-23.3. Alcw1/Alcdp1 interval genes show remarkable genetic variation among mice derived from the C57BL/6J and DBA/2J strains, the two most widely studied genetic animal models for alcohol-related traits. Here, we report the creation of a novel recombinant Alcw1/Alcdp1 congenic model (R2) in which the Alcw1/Alcdp1 interval from a donor C57BL/6J strain is introgressed onto a uniform, inbred DBA/2J genetic background. As expected, R2 mice demonstrate significantly less severe alcohol withdrawal compared to wild-type littermates. Additionally, comparing R2 and background strain animals, as well as reciprocal congenic (R8) and appropriate background strain animals, we assessed Alcw1/Alcdp1 dependent brain gene expression using microarray and quantitative PCR analyses. To our knowledge this includes the first Weighted Gene Co-expression Network Analysis using reciprocal congenic models. Importantly, this allows detection of co-expression patterns limited to one or common to both genetic backgrounds with high or low predisposition to alcohol withdrawal severity. The gene expression patterns (modules) in common contain genes related to oxidative phosphorylation, building upon human and animal model studies that implicate involvement of oxidative phosphorylation in alcohol use disorders (AUDs). Finally, we demonstrate that administration of N-acetylcysteine, an FDA-approved antioxidant, significantly reduces symptoms of alcohol withdrawal (convulsions) in mice, thus validating a phenotypic role for this network. Taken together, these studies support the importance of mitochondrial oxidative homeostasis in alcohol withdrawal and identify this network as a valuable therapeutic target in human AUDs.

16.
Alcohol Clin Exp Res ; 38(12): 2915-24, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25581648

RESUMO

BACKGROUND: Data from C57BL/6J (B6) × DBA/2J (D2) F2 intercrosses (B6xD2 F2 ), standard and recombinant inbred strains, and heterogeneous stock mice indicate that a reciprocal (or inverse) genetic relationship exists between alcohol consumption and withdrawal severity. Furthermore, some genetic studies have detected reciprocal quantitative trait loci (QTLs) for these traits. We used a novel mouse model developed by simultaneous selection for both high alcohol consumption/low withdrawal and low alcohol consumption/high withdrawal and analyzed the gene expression and genome-wide genotypic differences. METHODS: Randomly chosen third selected generation (S3 ) mice (N = 24/sex/line), bred from a B6xD2 F2 , were genotyped using the Mouse Universal Genotyping Array, which provided 2,760 informative markers. QTL analysis used a marker-by-marker strategy with the threshold for a significant log of the odds (LOD) set at 10. Gene expression in the ventral striatum was measured using the Illumina Mouse 8.2 array. Differential gene expression and the weighted gene co-expression network analysis (WGCNA) were implemented. RESULTS: Significant QTLs for consumption/withdrawal were detected on chromosomes (Chr) 2, 4, 9, and 12. A suggestive QTL mapped to Chr 6. Some of the QTLs overlapped with known QTLs mapped for 1 of the traits individually. One thousand seven hundred and forty-five transcripts were detected as being differentially expressed between the lines; there was some overlap with known withdrawal genes (e.g., Mpdz) located within QTL regions. WGCNA revealed several modules of co-expressed genes showing significant effects in both differential expression and intramodular connectivity; a module richly annotated with kinase-related annotations was most affected. CONCLUSIONS: Marked effects of selection on expression and network structure were detected. QTLs overlapping with differentially expressed genes on Chr 2 (distal) and 4 suggest that these are cis-eQTLs (Chr 2: Kif3b, Kcnq2; Chr 4: Mpdz, Snapc3). Other QTLs identified were on Chr 2 (proximal), 9, and 12. Network results point to involvement of kinase-related mechanisms and outline the need for further efforts such as interrogation of noncoding RNAs.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Cruzamento/métodos , Redes Reguladoras de Genes/genética , Locos de Características Quantitativas/genética , Síndrome de Abstinência a Substâncias/genética , Transcrição Gênica/genética , Consumo de Bebidas Alcoólicas/patologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Especificidade da Espécie , Síndrome de Abstinência a Substâncias/patologia
17.
Synapse ; 67(6): 280-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23345080

RESUMO

α-Synuclein (α-syn) protein and endocannabinoid CB1 receptors are primarily located in presynaptic terminals. An association between α-syn and CB1 receptors has recently been established in Parkinson's disease, but it is completely unknown whether there is an association between these two proteins in alcohol addiction. Therefore, we aimed to examine the α-syn mRNA transcript and protein expression levels in the prefrontal cortex, striatum, amygdala and hippocampus. These brain regions are the most frequently implicated in alcohol and other drug addiction. In these studies, we used C57BL/6 mice carrying a spontaneous deletion of the α-syn gene (C57BL/6(Snca-/-) ) and their respective controls (C57BL/6(Snca) (+/) (+) ). These animals were monitored for spontaneous alcohol consumption (3-10%) and their response to a hypnotic-sedative dose of alcohol (3 g kg(-1) ) was also assessed. Compared with the C57BL/6(Snca+/+) mice, we found that the C57BL/6(Snca-/-) mice exhibited a higher expression level of the CB1 mRNA transcript and CB1 receptor in the hippocampus and amygdala. Furthermore, C57BL/6(Snca-/-) mice showed an increase in alcohol consumption when offered a 10% alcohol solution. There was no significant difference in sleep time after the injection of 3 g/kg alcohol. These results are the first to reveal an association between α-syn and the CB1 receptor in the brain regions that are most frequently implicated in alcohol and other drug addictions.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Tonsila do Cerebelo/metabolismo , Hipocampo/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Transcrição Gênica , alfa-Sinucleína/genética , Tonsila do Cerebelo/fisiologia , Animais , Etanol/farmacologia , Deleção de Genes , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/genética , Sono/efeitos dos fármacos , alfa-Sinucleína/metabolismo
18.
Front Neurosci ; 5: 69, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21625610

RESUMO

BACKGROUND: With the advent of the GeneChip Exon Arrays, it is now possible to extract "exon-level" expression estimates, allowing for detection of alternative splicing events, one of the primary mechanisms of transcript diversity. In the context of (1) a complex trait use case and (2) a human cerebellum vs. heart comparison on previously validated data, we present a transcript-based statistical model and validation framework to allow detection of alternative exon usage (AEU) between different groups. To illustrate the approach, we detect and confirm differences in exon usage in the two of the most widely studied mouse genetic models (the C57BL/6J and DBA/2J inbred strains) and in a human dataset. RESULTS: We developed a computational framework that consists of probe level annotation mapping and statistical modeling to detect putative AEU events, as well as visualization and alignment with known splice events. We show a dramatic improvement (∼25 fold) in the ability to detect these events using the appropriate annotation and statistical model which is actually specified at the transcript level, as compared with the transcript cluster/gene-level annotation used on the array. An additional component of this workflow is a probe index that allows ranking AEU candidates for validation and can aid in identification of false positives due to single nucleotide polymorphisms. DISCUSSION: Our work highlights the importance of concordance between the functional unit interrogated (e.g., gene, transcripts) and the entity (e.g., exon, probeset) within the statistical model. The framework we present is broadly applicable to other platforms (including RNAseq).

19.
PLoS One ; 6(3): e17820, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21455293

RESUMO

C57BL/6J (B6) and DBA/2J (D2) are two of the most commonly used inbred mouse strains in neuroscience research. However, the only currently available mouse genome is based entirely on the B6 strain sequence. Subsequently, oligonucleotide microarray probes are based solely on this B6 reference sequence, making their application for gene expression profiling comparisons across mouse strains dubious due to their allelic sequence differences, including single nucleotide polymorphisms (SNPs). The emergence of next-generation sequencing (NGS) and the RNA-Seq application provides a clear alternative to oligonucleotide arrays for detecting differential gene expression without the problems inherent to hybridization-based technologies. Using RNA-Seq, an average of 22 million short sequencing reads were generated per sample for 21 samples (10 B6 and 11 D2), and these reads were aligned to the mouse reference genome, allowing 16,183 Ensembl genes to be queried in striatum for both strains. To determine differential expression, 'digital mRNA counting' is applied based on reads that map to exons. The current study compares RNA-Seq (Illumina GA IIx) with two microarray platforms (Illumina MouseRef-8 v2.0 and Affymetrix MOE 430 2.0) to detect differential striatal gene expression between the B6 and D2 inbred mouse strains. We show that by using stringent data processing requirements differential expression as determined by RNA-Seq is concordant with both the Affymetrix and Illumina platforms in more instances than it is concordant with only a single platform, and that instances of discordance with respect to direction of fold change were rare. Finally, we show that additional information is gained from RNA-Seq compared to hybridization-based techniques as RNA-Seq detects more genes than either microarray platform. The majority of genes differentially expressed in RNA-Seq were only detected as present in RNA-Seq, which is important for studies with smaller effect sizes where the sensitivity of hybridization-based techniques could bias interpretation.


Assuntos
Corpo Estriado/metabolismo , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de RNA/métodos , Animais , Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Polimorfismo de Nucleotídeo Único/genética
20.
BMC Genomics ; 11: 585, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20959017

RESUMO

BACKGROUND: The current study focused on the extent genetic diversity within a species (Mus musculus) affects gene co-expression network structure. To examine this issue, we have created a new mouse resource, a heterogeneous stock (HS) formed from the same eight inbred strains that have been used to create the collaborative cross (CC). The eight inbred strains capture > 90% of the genetic diversity available within the species. For contrast with the HS-CC, a C57BL/6J (B6) × DBA/2J (D2) F2 intercross and the HS4, derived from crossing the B6, D2, BALB/cJ and LP/J strains, were used. Brain (striatum) gene expression data were obtained using the Illumina Mouse WG 6.1 array, and the data sets were interrogated using a weighted gene co-expression network analysis (WGCNA). RESULTS: Genes reliably detected as expressed were similar in all three data sets as was the variability of expression. As measured by the WGCNA, the modular structure of the transcriptome networks was also preserved both on the basis of module assignment and from the perspective of the topological overlap maps. Details of the HS-CC gene modules are provided; essentially identical results were obtained for the HS4 and F2 modules. Gene ontology annotation of the modules revealed a significant overrepresentation in some modules for neuronal processes, e.g., central nervous system development. Integration with known protein-protein interactions data indicated significant enrichment among co-expressed genes. We also noted significant overlap with markers of central nervous system cell types (neurons, oligodendrocytes and astrocytes). Using the Allen Brain Atlas, we found evidence of spatial co-localization within the striatum for several modules. Finally, for some modules it was possible to detect an enrichment of transcription binding sites. The binding site for Wt1, which is associated with neurodegeneration, was the most significantly overrepresented. CONCLUSIONS: Despite the marked differences in genetic diversity, the transcriptome structure was remarkably similar for the F2, HS4 and HS-CC. These data suggest that it should be possible to integrate network data from simple and complex crosses. A careful examination of the HS-CC transcriptome revealed the expected structure for striatal gene expression. Importantly, we demonstrate the integration of anatomical and network expression data.


Assuntos
Cruzamentos Genéticos , Redes Reguladoras de Genes/genética , Variação Genética , Neostriado/metabolismo , Animais , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genética Populacional , Masculino , Camundongos , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Ligação Proteica , Transporte Proteico , Proteoma/genética , Proteoma/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...