Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7317, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443343

RESUMO

Among condensed matter systems, Mott insulators exhibit diverse properties that emerge from electronic correlations. In itinerant metals, correlations are usually weak, but can also be enhanced via geometrical confinement of electrons, that manifest as 'flat' dispersionless electronic bands. In the fast developing field of topological materials, which includes Dirac and Weyl semimetals, flat bands are one of the important components that can result in unusual magnetic and transport behaviour. To date, characterisation of flat bands and their magnetism is scarce, hindering the design of novel materials. Here, we investigate the ferromagnetic Kagomé semimetal Co3Sn2S2 using resonant inelastic X-ray scattering. Remarkably, nearly non-dispersive Stoner spin excitation peaks are observed, sharply contrasting with the featureless Stoner continuum expected in conventional ferromagnetic metals. Our band structure and dynamic spin susceptibility calculations, and thermal evolution of the excitations, confirm the nearly non-dispersive Stoner excitations as unique signatures of correlations and spin-polarized electronic flat bands in Co3Sn2S2. These observations serve as a cornerstone for further exploration of band-induced symmetry-breaking orders in topological materials.

2.
Nat Commun ; 13(1): 2327, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484168

RESUMO

The microscopic origins of emergent behaviours in condensed matter systems are encoded in their excitations. In ordinary magnetic materials, single spin-flips give rise to collective dipolar magnetic excitations called magnons. Likewise, multiple spin-flips can give rise to multipolar magnetic excitations in magnetic materials with spin S ≥ 1. Unfortunately, since most experimental probes are governed by dipolar selection rules, collective multipolar excitations have generally remained elusive. For instance, only dipolar magnetic excitations have been observed in isotropic S = 1 Haldane spin systems. Here, we unveil a hidden quadrupolar constituent of the spin dynamics in antiferromagnetic S = 1 Haldane chain material Y2BaNiO5 using Ni L3-edge resonant inelastic x-ray scattering. Our results demonstrate that pure quadrupolar magnetic excitations can be probed without direct interactions with dipolar excitations or anisotropic perturbations. Originating from on-site double spin-flip processes, the quadrupolar magnetic excitations in Y2BaNiO5 show a remarkable dual nature of collective dispersion. While one component propagates as non-interacting entities, the other behaves as a bound quadrupolar magnetic wave. This result highlights the rich and largely unexplored physics of higher-order magnetic excitations.

3.
Phys Rev Lett ; 126(10): 106401, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33784112

RESUMO

We explore the existence of the collective orbital excitations, orbitons, in the canonical orbital system KCuF_{3} using the Cu L_{3}-edge resonant inelastic x-ray scattering. We show that the nondispersive high-energy peaks result from the Cu^{2+} dd orbital excitations. These high-energy modes display good agreement with the ab initio quantum chemistry calculation, indicating that the dd excitations are highly localized. At the same time, the low-energy excitations present clear dispersion. They match extremely well with the two-spinon continuum following the comparison with Müller ansatz calculations. The localized dd excitations and the observation of the strongly dispersive magnetic excitations suggest that the orbiton dispersion is below the resolution detection limit. Our results can reconcile with the strong local Jahn-Teller effect in KCuF_{3}, which predominantly drives orbital ordering.

4.
Phys Rev Lett ; 126(8): 087001, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709756

RESUMO

The discovery of superconductivity in a d^{9-δ} nickelate has inspired disparate theoretical perspectives regarding the essential physics of this class of materials. A key issue is the magnitude of the magnetic superexchange, which relates to whether cuprate-like high-temperature nickelate superconductivity could be realized. We address this question using Ni L-edge and O K-edge spectroscopy of the reduced d^{9-1/3} trilayer nickelates R_{4}Ni_{3}O_{8} (where R=La, Pr) and associated theoretical modeling. A magnon energy scale of ∼80 meV resulting from a nearest-neighbor magnetic exchange of J=69(4) meV is observed, proving that d^{9-δ} nickelates can host a large superexchange. This value, along with that of the Ni-O hybridization estimated from our O K-edge data, implies that trilayer nickelates represent an intermediate case between the infinite-layer nickelates and the cuprates. Layered nickelates thus provide a route to testing the relevance of superexchange to nickelate superconductivity.

5.
J Phys Condens Matter ; 33(6): 06LT01, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33325375

RESUMO

Resonant inelastic x-ray spectroscopy at the uranium N4 absorption edge at 778 eV has been used to reveal the excitations in UO2 up to 1 eV. The earlier (1989) studies by neutron inelastic scattering of the crystal-field states within the 3H4 multiplet are confirmed. In addition, the first excited state of the 3F2 multiplet at ∼520 meV has been established, and there is a weak signal corresponding to the next excited state at ∼920 meV. This represents a successful application of soft x-ray spectroscopy to an actinide sample, and resolves an open question in UO2 that has been discussed for 50 years. The technique is described and important caveats are drawn about possible future applications.

6.
Phys Rev Lett ; 124(20): 207005, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32501068

RESUMO

The discovery of charge-density-wave-related effects in the resonant inelastic x-ray scattering spectra of cuprates holds the tantalizing promise of clarifying the interactions that stabilize the electronic order. Here, we report a comprehensive resonant inelastic x-ray scattering study of La_{2-x}Sr_{x}CuO_{4} finding that charge-density wave effects persist up to a remarkably high doping level of x=0.21 before disappearing at x=0.25. The inelastic excitation spectra remain essentially unchanged with doping despite crossing a topological transition in the Fermi surface. This indicates that the spectra contain little or no direct coupling to electronic excitations near the Fermi surface, rather they are dominated by the resonant cross section for phonons and charge-density-wave-induced phonon softening. We interpret our results in terms of a charge-density wave that is generated by strong correlations and a phonon response that is driven by the charge-density-wave-induced modification of the lattice.

7.
Phys Rev Lett ; 124(6): 067202, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32109129

RESUMO

Understanding many-body physics of elementary excitations has advanced our control over material properties. Here, we study spin-flip excitations in NiO using Ni L_{3}-edge resonant inelastic x-ray scattering (RIXS) and present a strikingly different resonant energy behavior between single and double spin-flip excitations. Comparing our results with single-site full-multiplet ligand field theory calculations we find that the spectral weight of the double-magnon excitations originates primarily from the double spin-flip transition of the quadrupolar RIXS process within a single magnetic site. Quadrupolar spin-flip processes are among the least studied excitations, despite being important for multiferroic or spin-nematic materials due to their difficult detection. We identify intermediate state multiplets and intra-atomic core-valence exchange interactions as the key many-body factors determining the fate of such excitations. RIXS resonant energy dependence can act as a convincing proof of existence of nondipolar higher-ranked magnetic orders in systems for which, only theoretical predictions are available.

8.
Phys Rev Lett ; 125(25): 257002, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416344

RESUMO

High T_{c} superconductors show a rich variety of phases associated with their charge degrees of freedom. Valence charges can give rise to charge ordering or acoustic plasmons in these layered cuprate superconductors. While charge ordering has been observed for both hole- and electron-doped cuprates, acoustic plasmons have only been found in electron-doped materials. Here, we use resonant inelastic x-ray scattering to observe the presence of acoustic plasmons in two families of hole-doped cuprate superconductors (La_{1.84}Sr_{0.16}CuO_{4} and Bi_{2}Sr_{1.6}La_{0.4}CuO_{6+δ}), crucially completing the picture. Interestingly, in contrast to the quasistatic charge ordering which manifests at both Cu and O sites, the observed acoustic plasmons are predominantly associated with the O sites, revealing a unique dichotomy in the behavior of valence charges in hole-doped cuprates.

9.
J Phys Condens Matter ; 27(32): 325702, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26214712

RESUMO

X-ray diffraction, specific heat, magnetic susceptibility and inelastic x-ray scattering measurements on the transurarium oxypnictides NpFeAsO and NpFeAsO0.85F0.15 are presented. No superconductivity down to 2 K was observed upon fluorine doping, contrary to the structurally analogous rare-earth pnictides. No modification of the phonon density of states was observed upon doping with fluorine. We discuss our results in light of the latest experimental and theoretical studies on the role of phonons in the superconducting pnictide compounds.

10.
Phys Rev Lett ; 113(14): 147206, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25325658

RESUMO

We report a neutron scattering study of the magnetic order and dynamics of the bilayer perovskite Sr(3)Fe(2)O(7), which exhibits a temperature-driven metal-insulator transition at 340 K. We show that the Fe(4+) moments adopt incommensurate spiral order below T(N) = 115 K and provide a comprehensive description of the corresponding spin-wave excitations. The observed magnetic order and excitation spectra can be well understood in terms of an effective spin Hamiltonian with interactions ranging up to third-nearest-neighbor pairs. The results indicate that the helical magnetism in Sr(3)Fe(2)O(7) results from competition between ferromagnetic double-exchange and antiferromagnetic superexchange interactions whose strengths become comparable near the metal-insulator transition. They thus confirm a decades-old theoretical prediction and provide a firm experimental basis for models of magnetic correlations in strongly correlated metals.

11.
Phys Rev Lett ; 102(10): 107007, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19392151

RESUMO

We present the first angle-resolved photoemission studies of electronic structure in CaC6, a superconducting graphite intercalation compound with T_{c}=11.6 K. We find that, contrary to theoretical models, the electron-phonon coupling on the graphene-derived Fermi sheets with high-frequency graphene-derived phonons is surprisingly strong and anisotropic. The shape of the Fermi surface is found to favor a dynamical intervalley nesting via exchange of high-frequency phonons. Our results suggest that graphene sheets play a crucial role in superconductivity in graphite intercalation compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...