Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 126(6): 1948-1958, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758279

RESUMO

Reflex abnormalities mediated by proprioceptive sensory neurons after peripheral nerve injury (PNI) can limit functional improvement, leaving patients with disability that affects their quality of life. We examined postinjury calcium transients in a subpopulation of dorsal root ganglion (DRG) neurons consisting primarily of proprioceptors to determine whether alterations in calcium homeostasis are present in proprioceptors, as has been documented in other DRG neurons after PNI. Using transgenic mice, we restricted expression of the calcium indicator GCaMP6s to DRG neurons containing parvalbumin (PV). Mice of both sexes were randomly assigned to sham, sciatic nerve crush, or sciatic nerve transection and resuture conditions. Calcium transients were recorded from ex vivo preparations of animals at one of three postsurgery time points: 1-3 days, 7-11 days, and after 60 days of recovery. Results demonstrated that the post-PNI calcium transients of PV DRG neurons are significantly different than sham. Abnormalities were not present during the acute response to injury (1-3 days), but transients were significantly different than sham at the recovery stage where axon regeneration is thought to be underway (7-11 days). During late-stage recovery (60 days postinjury), disturbances in the decay time course of calcium transients in transection animals persisted, whereas parameters of transients from crush animals returned to normal. These findings identify a deficit in calcium homeostasis in proprioceptive neurons, which may contribute to the failure to fully recover proprioceptive reflexes after PNI. Significant differences in the calcium transients of crush versus transection animals after reinnervation illustrate calcium homeostasis alterations are distinctive to injury type.NEW & NOTEWORTHY This study examines calcium homeostasis after peripheral nerve injury in dorsal root ganglion (DRG) neurons expressing parvalbumin, a group of large-diameter afferents primarily consisting of proprioceptors, using two-photon calcium imaging in the intact DRG. Our findings identify aberrant calcium homeostasis as an additional source of sensory neuron dysfunction following peripheral nerve injury, uncover differences between two injury models, and track how these changes develop and resolve over the course of recovery.


Assuntos
Cálcio/metabolismo , Gânglios Espinais/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Propriocepção/fisiologia , Neuropatia Ciática/metabolismo , Células Receptoras Sensoriais/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Compressão Nervosa
2.
eNeuro ; 6(4)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31311802

RESUMO

We investigated the calcium dynamics of dorsal root ganglion (DRG) neurons using transgenic mice to target expression of the genetically encoded calcium indicator (GECI), GCaMP6s, to a subset of neurons containing parvalbumin (PV), a calcium-binding protein present in proprioceptors and low-threshold mechanoreceptors. This study provides the first analysis of GECI calcium transient parameters from large-diameter DRG neurons. Our approach generated calcium transients of consistent shape and time-course, with quantifiable characteristics. Four parameters of calcium transients were determined to vary independently from each other and thus are likely influenced by different calcium-regulating mechanisms: peak amplitude, rise time (RT), decay time, and recovery time. Pooled analysis of 188 neurons demonstrated unimodal distributions, providing evidence that PV+ DRG neurons regulate calcium similarly as a population despite their differences in size, electrical properties, and functional sensitivities. Calcium transients increased in size with elevated extracellular calcium, longer trains of action potentials, and higher stimulation frequencies. RT and decay time increased with the addition of the selective sarco/endoplasmic reticulum calcium ATPases (SERCA) blocker, thapsigargin (TG), while peak amplitude and recovery time remained the same. When elevating bath pH to 8.8 to block plasma-membrane calcium ATPases (PMCA), all measured parameters significantly increased. These results illustrate that GECI calcium transients provide sufficient resolution to detect changes in electrical activity and intracellular calcium concentration, as well as discern information about the activity of specific subclasses of calcium regulatory mechanisms.


Assuntos
Sinalização do Cálcio/fisiologia , Gânglios Espinais/fisiologia , Neurônios/fisiologia , Parvalbuminas/fisiologia , Animais , Cálcio/análise , Feminino , Masculino , Camundongos Transgênicos , Imagem Óptica/métodos
3.
PLoS One ; 12(1): e0170751, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28122055

RESUMO

Muscle proprioceptive afferents provide feedback critical for successful execution of motor tasks via specialized mechanoreceptors housed within skeletal muscles: muscle spindles, supplied by group Ia and group II afferents, and Golgi tendon organs, supplied by group Ib afferents. The morphology of these proprioceptors and their associated afferents has been studied extensively in the cat soleus, and to a lesser degree, in the rat; however, quantitative analyses of proprioceptive innervation in the mouse soleus are comparatively limited. The present study employed genetically-encoded fluorescent reporting systems to label and analyze muscle spindles, Golgi tendon organs, and the proprioceptive sensory neuron subpopulations supplying them within the intact mouse soleus muscle using high magnification confocal microscopy. Total proprioceptive receptors numbered 11.3 ± 0.4 and 5.2 ± 0.2 for muscle spindles and Golgi tendon organs, respectively, and these receptor counts varied independently (n = 27 muscles). Analogous to findings in the rat, muscle spindles analyzed were most frequently supplied by two proprioceptive afferents, and in the majority of instances, both were classified as primary endings using established morphological criteria. Secondary endings were most frequently observed when spindle associated afferents totaled three or more. The mean diameter of primary and secondary afferent axons differed significantly, but the distributions overlap more than previously observed in cat and rat studies.


Assuntos
Contração Muscular/fisiologia , Fusos Musculares/fisiologia , Músculo Esquelético/inervação , Propriocepção/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Mecanorreceptores/fisiologia , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...