Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Philos Trans A Math Phys Eng Sci ; 380(2215): 20210108, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34865528

RESUMO

Removing methane from the air is possible, but do the costs outweigh the benefits? This note explores the question of whether removing methane from the atmosphere is justifiable. Destruction of methane by oxidation to CO2 eliminates 97% of the warming impact on a 100-yr time scale. Methane can be oxidized by a variety of methods including thermal or ultraviolet photocatalysis and various processes of physical, chemical or biological oxidizers. Each removal method has energy costs (with the risk of causing embedded CO2 emission that cancel the global warming gain), but in specific circumstances, including settings where air with high methane is habitually present, removal may be competitive with direct efforts to cut fugitive methane leaks. In all cases however, great care must be taken to ensure that the destruction has a net positive impact on the total global warming, and that the resources required would not be better used for stopping the methane from being emitted. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.


Assuntos
Metano , Oxirredução
3.
Astrobiology ; 19(11): 1388-1397, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31390236

RESUMO

Lower heating of our planet by the young Sun was compensated by higher warming from factors such as greater greenhouse gas concentrations or reduced albedo. Earth's climate history has therefore been one of increasing solar forcing through time roughly cancelled by decreasing forcing due to geological and biological processes. The current generation of coupled carbon-cycle/climate models suggests that decreasing geological forcing-due to falling rates of outgassing, continent growth, and plate spreading-can account for much of Earth's climate history. If Earth-like planets orbiting in the habitable zone of red dwarfs experience a similar history of decreasing geological forcing, their climates will cool at a faster rate than is compensated for by the relatively slow evolution of their smaller stars. As a result, they will become globally glaciated within a few billion years. The results of this paper therefore suggest that coupled carbon-cycle/climate models account, parsimoniously, for both the faint young Sun paradox and the puzzle of why Earth orbits a relatively rare and short-lived star-type.


Assuntos
Mudança Climática , Clima Frio , Planeta Terra , Meio Ambiente Extraterreno , Astros Celestes , Atmosfera , Ciclo do Carbono , Radiação Cósmica/efeitos adversos , Modelos Teóricos , Luz Solar/efeitos adversos
4.
Astrobiology ; 17(1): 61-77, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28103107

RESUMO

This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M⊙ < M < 1.04 M⊙, and the range for planets with at least simple life is 0.57 M⊙ < M < 1.64 M⊙. Key Words: Habitability-Habitable zone-Anthropic-Red dwarfs-Initial mass function. Astrobiology 17, 61-77.


Assuntos
Planeta Terra , Exobiologia , Meio Ambiente Extraterreno , Astros Celestes , Probabilidade , Rotação , Sistema Solar , Fatores de Tempo
5.
Front Plant Sci ; 6: 756, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442069

RESUMO

Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...