Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4936, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472289

RESUMO

Many countries with tropical reef systems face hard choices preserving coral reefs in the face of climate change on limited budgets. One approach to maximising regional reef resilience is targeting management efforts and resources at reefs that export large numbers of larvae to other reefs. However, this requires reef connectivity to be quantified. To map coral connectivity in the Seychelles reef system we carried out a population genomic study of the Porites lutea species complex using 241 sequenced colonies from multiple islands. To identify oceanographic drivers of this connectivity and quantify variability, we further used a 2 km resolution regional ocean simulation coupled with a larval dispersal model to predict the flow of coral larvae between reef sites. Patterns of admixture and gene flow are broadly supported by model predictions, but the realised connectivity is greater than that predicted from model simulations. Both methods detected a biogeographic dispersal barrier between the Inner and Outer Islands of Seychelles. However, this barrier is permeable and substantial larval transport is possible across Seychelles, particularly for one of two putative species found in our genomic study. The broad agreement between predicted connectivity and observed genetic patterns supports the use of such larval dispersal simulations in reef system management in Seychelles and the wider region.


Assuntos
Antozoários , Recifes de Corais , Animais , Seicheles , Antozoários/genética , Genética Populacional , Larva
2.
Biodivers Data J ; 9: e65970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552373

RESUMO

BACKGROUND: During the 2019 First Descent: Seychelles Expedition, shallow and deep reef ecosystems of the Seychelles Outer Islands were studied by deploying a variety of underwater technologies to survey their benthic flora and fauna. Submersibles, remotely operated vehicles (ROVs) and SCUBA diving teams used stereo-video camera systems to record benthic communities during transect surveys conducted at 10 m, 30 m, 60 m, 120 m, 250 m and 350 m depths. In total, ~ 45 h of video footage was collected during benthic transect surveys, which was subsequently processed using annotation software in order to assess reef biodiversity and community composition. Here, we present a photographic guide for the visual identification of the marine macrophytes, corals, sponges and other common invertebrates that inhabit Seychelles' reefs. It is hoped that the resulting guide will aid marine biologists, conservationists, managers, divers and naturalists with the coarse identification of organisms as seen in underwater footage or live in the field. NEW INFORMATION: A total of 184 morphotypes (= morphologically similar individuals) were identified belonging to Octocorallia (47), Porifera (35), Scleractinia (32), Asteroidea (19), Echinoidea (10), Actiniaria (9), Chlorophyta (8), Antipatharia (6), Hydrozoa (6), Holothuroidea (5), Mollusca (2), Rhodophyta (2), Tracheophyta (2), Annelida (1), Crinoidea (1), Ctenophora (1), Ochrophyta (1) and Zoantharia (1). Out of these, we identified one to phylum level, eight to class, 14 to order, 27 to family, 110 to genus and 24 to species. This represents the first attempt to catalogue the benthic diversity from shallow reefs and up to 350 m depth in Seychelles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...