Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Geochem ; 157: 1-17, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37941778

RESUMO

Contamination from acid mine drainage affects ecosystems and usability of groundwater for domestic and municipal purposes. The Captain Jack Superfund Site outside of Ward, Boulder County, Colorado, USA, hosts a draining mine adit that was remediated through emplacement of a hydraulic bulkhead to preclude acid mine drainage from entering nearby Lefthand Creek. During impoundment of water within the mine workings in 2020, a diverse and novel dataset of stable isotopes of water, sulfate, and carbon (δ2H, δ18OH2O, δ18OSO4, δ34S, δ13CDIC), rare earth elements, and environmental tracers (noble gases and tritium) were collected to understand groundwater recharge and mixing, mechanisms of sulfide oxidation and water-rock interaction, and the influence of remediation on the hydrologic and geochemical system. Water isotopes indicate that groundwater distal from the mine workings has seasonally variable recharge sources whereas water within the workings has a distinctive composition with minimal temporal variability. Sulfate isotopes indicate that sulfide oxidation occurs both within the mine workings and in adjacent igneous dikes, and that sulfide oxidation may occur under suboxic conditions with ferric iron as the oxidant. Carbon isotopes track the neutralization of acidic waters and the carbon mass budget of the system. Rare earth elements corroborate stable isotopes in indicating groundwater compartmentalization, and additionally illustrate enhanced mineral weathering in the mine workings. Environmental tracers indicate mixing of modern and pre-modern groundwater and inform timelines that active remediation may be needed. Together these datasets provide a useful template for similar investigations of abandoned mine sites where physical mixing processes, sources of solute loading, or remediation timeframes are of importance.

2.
Sci Total Environ ; 876: 162458, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36871743

RESUMO

Two synoptic sampling campaigns were conducted to quantify metal loading to Illinois Gulch, a small stream affected by historical mining activities. The first campaign was designed to determine the degree to which Illinois Gulch loses water to the underlying mine workings and to determine the effect of these losses on observed metal loads. The second campaign was designed to evaluate metal loading within Iron Springs, a subwatershed that was responsible for the majority of the metal loading observed during the first campaign. A continuous, constant-rate injection of a conservative tracer was initiated prior to both sampling campaigns and maintained throughout the duration of each study. Tracer concentrations were subsequently used to determine streamflow in gaining stream reaches using the tracer-dilution method, and as an indicator of hydrologic connections between Illinois Gulch and subsurface mine workings. Streamflow losses to the mine workings were quantified during the first campaign using a series of slug additions in which specific conductivity readings were used as a surrogate for tracer concentration. Data from the continuous injections and slug additions were combined to develop spatial streamflow profiles along each study reach. Streamflow estimates were multiplied by observed metal concentrations to yield spatial profiles of metal load that were in turn used to quantify and rank metal sources. Study results indicate that Illinois Gulch loses water to subsurface mine workings and that remedial measures that reduce flow loss (e.g. channel lining) could lessen metal loading from the Iron Springs area. The primary sources of metals to Illinois Gulch include diffuse springs and groundwater, and a draining mine adit. Diffuse sources were determined to have a much larger effect on water quality than other sources that had been the subject of previous investigations due to their visual appearance, supporting the idea that "the truth is in the stream." The overall approach of combining spatially intensive sampling with a rigorous hydrological characterization is applicable to non-mining constituents such as nutrients and pesticides.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32485845

RESUMO

Nontuberculous mycobacteria (NTM) are environmental bacteria that may cause chronic lung disease. Environmental factors that favor NTM growth likely increase the risk of NTM exposure within specific environments. We aimed to identify water-quality constituents (Al, As, Cd, Ca, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Na, Zn, and pH) associated with NTM disease across Colorado watersheds. We conducted a geospatial, ecological study, associating data from patients with NTM disease treated at National Jewish Health and water-quality data from the Water Quality Portal. Water-quality constituents associated with disease risk were identified using generalized linear models with Poisson-distributed discrete responses. We observed a highly robust association between molybdenum (Mo) in the source water and disease risk. For every 1- unit increase in the log concentration of molybdenum in the source water, disease risk increased by 17.0%. We also observed a statistically significant association between calcium (Ca) in the source water and disease risk. The risk of NTM varied by watershed and was associated with watershed-specific water-quality constituents. These findings may inform mitigation strategies to decrease the overall risk of exposure.


Assuntos
Molibdênio , Infecções por Mycobacterium não Tuberculosas , Poluição da Água/estatística & dados numéricos , Qualidade da Água , Colorado , Humanos , Micobactérias não Tuberculosas
4.
Environ Sci Pollut Res Int ; 24(20): 17220-17240, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28589273

RESUMO

Combining the synoptic mass balance approach with principal components analysis (PCA) can be an effective method for discretising the chemistry of inflows and source areas in watersheds where contamination is diffuse in nature and/or complicated by groundwater interactions. This paper presents a field-scale study in which synoptic sampling and PCA are employed in a mineralized watershed (Lion Creek, Colorado, USA) under low flow conditions to (i) quantify the impacts of mining activity on stream water quality; (ii) quantify the spatial pattern of constituent loading; and (iii) identify inflow sources most responsible for observed changes in stream chemistry and constituent loading. Several of the constituents investigated (Al, Cd, Cu, Fe, Mn, Zn) fail to meet chronic aquatic life standards along most of the study reach. The spatial pattern of constituent loading suggests four primary sources of contamination under low flow conditions. Three of these sources are associated with acidic (pH <3.1) seeps that enter along the left bank of Lion Creek. Investigation of inflow water (trace metal and major ion) chemistry using PCA suggests a hydraulic connection between many of the left bank inflows and mine water in the Minnesota Mine shaft located to the north-east of the river channel. In addition, water chemistry data during a rainfall-runoff event suggests the spatial pattern of constituent loading may be modified during rainfall due to dissolution of efflorescent salts or erosion of streamside tailings. These data point to the complexity of contaminant mobilisation processes and constituent loading in mining-affected watersheds but the combined synoptic sampling and PCA approach enables a conceptual model of contaminant dynamics to be developed to inform remediation.


Assuntos
Mineração , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Metais , Minnesota , Chuva , Rios , Água
5.
Sci Total Environ ; 574: 1484-1491, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27650647

RESUMO

Indium is an increasingly important metal in semiconductors and electronics and has uses in important energy technologies such as photovoltaic cells and light-emitting diodes (LEDs). One significant flux of indium to the environment is from lead, zinc, copper, and tin mining and smelting, but little is known about its aqueous behavior after it is mobilized. In this study, we use Mineral Creek, a headwater stream in southwestern Colorado severely affected by heavy metal contamination as a result of acid mine drainage, as a natural laboratory to study the aqueous behavior of indium. At the existing pH of ~3, indium concentrations are 6-29µg/L (10,000× those found in natural rivers), and are completely filterable through a 0.45µm filter. During a pH modification experiment, the pH of the system was raised to >8, and >99% of the indium became associated with the suspended solid phase (i.e. does not pass through a 0.45µm filter). To determine the mechanism of removal of indium from the filterable and likely primarily dissolved phase, we conducted laboratory experiments to determine an upper bound for a sorption constant to iron oxides, and used this, along with other published thermodynamic constants, to model the partitioning of indium in Mineral Creek. Modeling results suggest that the removal of indium from the filterable phase is consistent with precipitation of indium hydroxide from a dissolved phase. This work demonstrates that nonferrous mining processes can be a significant source of indium to the environment, and provides critical information about the aqueous behavior of indium.

6.
Environ Sci Technol ; 50(23): 12641-12649, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934261

RESUMO

Low-flow synoptic sampling campaigns are often used as the primary tool to characterize watersheds affected by mining. Although such campaigns are an invaluable part of site characterization, investigations which focus solely on low-flow conditions may yield misleading results. The objective of this paper is to demonstrate this point and elucidate the mechanisms responsible for the release of metals during rainfall runoff. This objective is addressed using data from diel and synoptic sampling campaigns conducted over a two-day period. Low-flow synoptic sampling results indicate that concentrations of most constituents meet aquatic standards. This finding is in contrast to findings from a diel sampling campaign that captured dramatic increases in concentrations during rainfall runoff. Concentrations during the rising limb of the hydrograph were 2-23 times concentrations observed during synoptic sampling (most increases were >10-fold), remaining elevated during the receding limb of the hydrograph to produce a clockwise hysteresis loop. Hydrologic mechanisms responsible for the release of metals include increased transport due to resuspension of streambed solids, erosion of alluvial tailings, and overland flow. Rainfall also elevated the alluvial groundwater table and increased infiltration through the vadose zone, likely resulting in dissolution from alluvial tailings that were dry prior to the event.


Assuntos
Rios , Qualidade da Água , Monitoramento Ambiental , Água Subterrânea , Metais , Montana , Poluentes Químicos da Água
7.
Environ Sci Technol ; 46(1): 340-7, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22074087

RESUMO

A post audit for a reactive transport model used to evaluate acid mine drainage treatment systems is presented herein. The post audit is based on a paired synoptic approach in which hydrogeochemical data are collected at low (existing conditions) and elevated (following treatment) pH. Data obtained under existing, low-pH conditions are used for calibration, and the resultant model is used to predict metal concentrations observed following treatment. Predictions for Al, As, Fe, H(+), and Pb accurately reproduce the observed reduction in dissolved concentrations afforded by the treatment system, and the information provided in regard to standard attainment is also accurate (predictions correctly indicate attainment or nonattainment of water quality standards for 19 of 25 cases). Errors associated with Cd, Cu, and Zn are attributed to misspecification of sorbent mass (precipitated Fe). In addition to these specific results, the post audit provides insight in regard to calibration and sensitivity analysis that is contrary to conventional wisdom. Steps taken during the calibration process to improve simulations of As sorption were ultimately detrimental to the predictive results, for example, and the sensitivity analysis failed to bracket observed metal concentrations.


Assuntos
Ácidos/química , Recuperação e Remediação Ambiental/métodos , Mineração , Modelos Químicos , Rios/química , Eliminação de Resíduos Líquidos , Simulação por Computador , Minerais/química , Incerteza , Qualidade da Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...