Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(22): 15281-15292, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38741953

RESUMO

A high-performance dye adsorbent of Mg/Al-layered double hydroxide modified water hyacinth hydrochar (MgAl@WH) was synthesized by a simple hydrothermal method. The surface functional groups, elemental composition, crystalline structure, and surface morphology of the prepared (MgAl@WH) were determined using different analytical techniques. The characterization results revealed that the (MgAl@WH) hydrochar surface offered more active adsorption sites, facilitating the mordant brown (anionic dye) adsorption, leading to its superior performance with much higher uptake capability (311.0 mg g-1 at 298 K) than Mg/Al double hydroxide nanosheets (MgAl DLHs, 80.2 mg g-1 at 298 K) and dried water hyacinth (WH, 10.0 mg g-1 at 298 K). The adsorption behavior of MgAL@WH follows the pseudo second order kinetic model (R2 = 0.999) and Langmuir isotherm model (R2 = 0.999). Moreover, MgAl@WH bonded efficiently with mordant brown dye via hydrogen bonding and interlayer anion exchange with monolayer formation. Additionally, the recycling tests revealed that the MgAl@WH can be reused over 10 cycles without significant change in the removal efficiency. Based on the obtained findings, Mg/Al-layered double hydroxide modified water hyacinth hydrochar (MgAl@WH), for its economic and environmental benefits, has recently been used as an efficient adsorbent to remediate industrial wastewater containing anionic dyes.

2.
ACS Omega ; 7(7): 6058-6069, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224367

RESUMO

A novel chelating adsorbent, based on the functionalization of activated carbon (AC) derived from water hyacinth (WH) with melamine thiourea (MT) to form melamine thiourea-modified activated carbon (MT-MAC), is used for the effective removal of Hg2+, Pb2+, and Cd2+ from aqueous solution. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) theory confirm the successful functionalization of AC with the melamine thiourea chelating ligand through the amidation reaction between the carboxyl groups of oxidized activated carbon (OAC) and the amino groups of melamine thiourea (MT) in the presence of dicyclohexylcarbodiimide (DCC) as a coupling agent. The prepared MT-MAC exhibited extensive potential for the adsorption of the toxic metal ions Hg2+, Pb2+, and Cd2+ from wastewater. The MT-MAC showed high capacities for the adsorption of Hg2+ (292.6 mg·g-1), Pb2+ (237.4 mg·g-1), and Cd2+ (97.9 mg·g-1) from aqueous solution. Additionally, 100% removal efficiency of Hg2+ at pH 5.5 was observed at very low initial concentrations (25-1000 ppb).The experimental sorption data could be fitted well with the Langmuir isotherm model, suggesting a monolayer adsorption behavior. The kinetic data of the chemisorption mechanism realized by the melamine thiourea groups grafted onto the activated carbon surface have a perfect match with the pseudo-second-order (PSO) kinetic model. In a mixed solution of metal ions containing 50 ppm of each ion, MT-MAC showed a removal of 97.0% Hg2+, 68% Pb2+, 45.0% Cd2+, 17.0% Cu2+, 7.0% Ni2+, and 5.0% Zn2+. Consequently, MT-MAC has exceptional selectivity for Hg2+ ions from the mixed metal ion solutions. The MT-MAC adsorbent showed high stability even after three adsorption-desorption cycles. According to the results obtained, the use of the MT-MAC adsorbent for the adsorption of Pb2+, Hg2+, and Cd2+ metal ions from polluted water is promising.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...