Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 935: 173299, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38761954

RESUMO

As humanity embarks on the journey to establish permanent colonies on Mars, ensuring a reliable source of sustenance will be crucial. Therefore, detailed studies regarding crop cultivation using Martian simulants are of great importance. This study aimed to grow wheat on substrates based on soil and Martian simulants, with the addition of vermicompost, to investigate the differences in wheat development. Basic physical and chemical properties of substrates were examined, including determination of macro- and microelements as well as their microbiological properties. Plant growth parameters were also determined. The addition of vermicompost positively affected wheat grown on soil, but the effect on plants grown on substrate with Martian simulants was negligible. Comparing the microbiological and chemical components, it was observed that plants can defend themselves against the negative effects of growth on the Martian simulants, but their success depends on having the PGPR (Plant growth-promoting rhizobacteria) present, which can provide the plant with additional nitrogen. The presence of beneficial symbiotic microbiota will allow the wheat to wait out the negative growth time rather than adapt to the regolith environment.


Assuntos
Solo , Triticum , Triticum/crescimento & desenvolvimento , Solo/química , Marte , Microbiologia do Solo , Microbiota/efeitos dos fármacos , Compostagem/métodos
2.
PLoS One ; 19(5): e0302149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38691526

RESUMO

Future colonists on Mars will need to produce fresh food locally to acquire key nutrients lost in food dehydration, the primary technique for sending food to space. In this study we aimed to test the viability and prospect of applying an intercropping system as a method for soil-based food production in Martian colonies. This novel approach to Martian agriculture adds valuable insight into how we can optimise resource use and enhance colony self-sustainability, since Martian colonies will operate under very limited space, energy, and Earth supplies. A likely early Martian agricultural setting was simulated using small pots, a controlled greenhouse environment, and species compliant with space mission requirements. Pea (Pisum sativum), carrot (Daucus carota) and tomato (Solanum lycopersicum) were grown in three soil types ("MMS-1" Mars regolith simulant, potting soil and sand), planted either mixed (intercropping) or separate (monocropping). Rhizobia bacteria (Rhizobium leguminosarum) were added as the pea symbiont for Nitrogen-fixing. Plant performance was measured as above-ground biomass (g), yield (g), harvest index (%), and Nitrogen/Phosphorus/Potassium content in yield (g/kg). The overall intercropping system performance was calculated as total relative yield (RYT). Intercropping had clear effects on plant performance in Mars regolith, being beneficial for tomato but mostly detrimental for pea and carrot, ultimately giving an overall yield disadvantage compared to monocropping (RYT = 0.93). This effect likely resulted from the observed absence of Rhizobia nodulation in Mars regolith, negating Nitrogen-fixation and preventing intercropped plants from leveraging their complementarity. Adverse regolith conditions-high pH, elevated compactness and nutrient deficiencies-presumably restricted Rhizobia survival/nodulation. In sand, where more favourable soil conditions promoted effective nodulation, intercropping significantly outperformed monocropping (RYT = 1.32). Given this, we suggest that with simple regolith improvements, enhancing conditions for nodulation, intercropping shows promise as a method for optimising food production in Martian colonies. Specific regolith ameliorations are proposed for future research.


Assuntos
Marte , Solo , Solanum lycopersicum , Solanum lycopersicum/crescimento & desenvolvimento , Solo/química , Daucus carota/crescimento & desenvolvimento , Agricultura/métodos , Pisum sativum/crescimento & desenvolvimento , Biomassa , Fixação de Nitrogênio , Nitrogênio/metabolismo , Voo Espacial
3.
Environ Pollut ; 349: 123844, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580065

RESUMO

Increasing nitrogen depositions adversely affect European landscapes, including habitats within the Natura2000 network. Critical loads for nitrogen deposition have been established to quantify the loss of habitat quality. When the nitrogen deposition rises above a habitat-specific critical load, the quality of the focal habitat is expected to be negatively influenced. Here, we investigate how the quality of habitat types is affected beyond the critical load. We calculated response curves for 60 terrestrial habitat types in the Netherlands to the estimated nitrogen deposition (EMEP-data). The curves for habitat types are based on the occurrence of their characteristic plant species in North-Western Europe (plot data from the European Vegetation Archive). The estimated response curves were corrected for soil type, mean annual temperature and annual precipitation. Evaluation was carried out by expert judgement, and by comparison with gradient deposition field studies. For 39 habitats the response to nitrogen deposition was judged to be reliable by five experts, while out of the 41 habitat types for which field studies were available, 25 showed a good agreement. Some of the curves showed a steep decline in quality and some a more gradual decline with increasing nitrogen deposition. We compared the response curves with both the empirical and modelled critical loads. For 41 curves, we found a decline already starting below the critical load.


Assuntos
Ecossistema , Monitoramento Ambiental , Nitrogênio , Nitrogênio/análise , Monitoramento Ambiental/métodos , Países Baixos , Solo/química , Plantas/metabolismo
5.
Environ Pollut ; 266(Pt 2): 115257, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32750540

RESUMO

Plant species occurrence in Europe is affected by changes in nitrogen deposition and climate. Insight into potential future effects of those changes can be derived by a model approach based on field-based empirical evidence on a continental scale. In this paper, we present a newly developed empirical model PROPS, predicting the occurrence probabilities of plant species in response to a combination of climatic factors, nitrogen deposition and soil properties. Parameters included were temperature, precipitation, nitrogen deposition, soil pH and soil C/N ratio. The PROPS model was fitted to plant species occurrence data of about 800,000 European relevés with estimated values for pH and soil C/N ratio and interpolated climate and modelled N deposition data obtained from the Ensemble meteo data set and EMEP model results, respectively. The model was validated on an independent data set. The test of ten species against field data gave an average Pearson's r-value of 0.79. PROPS was applied to a grassland and a heathland site to evaluate the effect of scenarios for nitrogen deposition and climate change on the Habitat Suitability Index (HSI), being the average of the relative probabilities, compared to the maximum probability, of all target species in a habitat. Results for the period 1930-2050 showed that an initial increase and later decrease in nitrogen deposition led to a pronounced decrease in HSI, and with dropping nitrogen deposition to an increase of the HSI. The effect of climate change appeared to be limited, resulting in a slight increase in HSI.


Assuntos
Mudança Climática , Nitrogênio/análise , Ecossistema , Europa (Continente) , Plantas , Solo
6.
Conserv Biol ; 34(6): 1536-1548, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32463531

RESUMO

Present biodiversity comprises the evolutionary heritage of Earth's epochs. Lineages from particular epochs are often found in particular habitats, but whether current habitat decline threatens the heritage from particular epochs is unknown. We hypothesized that within a given region, humans threaten specifically habitats that harbor lineages from a particular geological epoch. We expect so because humans threaten environments that dominated and lineages that diversified during these epochs. We devised a new approach to quantify, per habitat type, diversification of lineages from different epochs. For Netherlands, one of the floristically and ecologically best-studied regions, we quantified the decline of habitat types and species in the past century. We defined habitat types based on vegetation classification and used existing ranking of decline of vegetation classes and species. Currently, most declining habitat types and the group of red-listed species are characterized by increased diversification of lineages dating back to Paleogene, specifically to Paleocene-Eocene and Oligocene. Among vulnerable habitat types with large representation of lineages from these epochs were sublittoral and eulittoral zones of temperate seas and 2 types of nutrient-poor, open habitats. These losses of evolutionary heritage would go unnoticed with classical measures of evolutionary diversity. Loss of heritage from Paleocene-Eocene became unrelated to decline once low competition, shade tolerance, and low proportion of non-Apiaceae were accounted for, suggesting that these variables explain the loss of heritage from Paleocene-Eocene. Losses of heritage from Oligocene were partly explained by decline of habitat types occupied by weak competitors and shade-tolerant species. Our results suggest a so-far unappreciated human threat to evolutionary heritage: habitat decline threatens descendants from particular epochs. If the trends persist into the future uncontrolled, there may be no habitats within the region for many descendants of evolutionary ancient epochs, such as Paleogene.


Amenazas Antropogénicas para la Herencia Evolutiva de las Angiospermas en los Países Bajos a partir del Incremento en los Ambientes de Competencia Elevada Resumen La biodiversidad actual abarca la herencia evolutiva de las épocas de la Tierra. Los linajes de épocas particulares se encuentran con frecuencia en hábitats particulares pero desconocemos si la declinación contemporánea de los hábitats amenaza a la herencia de una época en particular. Nuestra hipótesis supone que dentro de una región determinada, los humanos son una amenaza específica para los hábitats que albergan linajes de una época geológica particular. Suponemos esto pues los humanos amenazan a los ambientes y a los linajes que se diversificaron durante estas épocas. Diseñamos una nueva estrategia para cuantificar, por tipo de hábitat, la diversificación de los linajes de épocas distintas. Cuantificamos para los Países Bajos, una de las regiones mejor estudiada florística y ecológicamente, la declinación de los tipos de hábitat y de especies durante el siglo pasado. Definimos los tipos de hábitat con base en la clasificación de la vegetación y usamos las jerarquías existentes de la declinación de clases y especies de vegetación. Hoy en día, la mayoría de los tipos de hábitat en declinación y el grupo de especies en lista roja se caracterizan por la diversificación incrementada de los linajes que datan del Paleógeno, específicamente el Paleoceno-Eoceno y el Oligoceno. Entre los tipos de hábitat vulnerables con una gran representación de los linajes de estas épocas encontramos a la zona sublitoral e intermareal de los mares templados y dos tipos de hábitats abiertos con deficiencia de nutrientes. Estas pérdidas de linaje evolutivo pasarían desapercibidas con las medidas clásicas de la diversidad evolutiva. La pérdida de la herencia del Paleoceno-Eoceno dejó de estar relacionada con la declinación una vez que contabilizamos la baja competencia, la tolerancia a la sombra y la baja proporción de especies no pertenecientes a la familia Apiaceae, lo que sugiere que estas variables explican la pérdida de herencia del Paleoceno-Eoceno. La pérdida de herencia del Oligoceno estuvo explicada en parte por la declinación de los tipos de hábitat ocupados por competidores débiles y especies tolerantes a la sombra. Nuestros resultados sugieren una amenaza humana para la herencia evolutiva que todavía no ha sido apreciada: la declinación del hábitat amenaza a los descendientes de épocas particulares. Si en el futuro las tendencias siguen sin ser controladas, puede que no haya hábitats en la región para muchos de los descendientes evolutivos de épocas antiguas, como el Paleógeno.


Assuntos
Magnoliopsida , Biodiversidade , Evolução Biológica , Conservação dos Recursos Naturais , Ecossistema , Humanos , Países Baixos , Filogenia
7.
Environ Pollut ; 262: 114351, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32443221

RESUMO

Forest understory plant communities in the eastern United States are often diverse and are potentially sensitive to changes in climate and atmospheric inputs of nitrogen caused by air pollution. In recent years, empirical and processed-based mathematical models have been developed to investigate such changes in plant communities. In the study reported here, a robust set of understory vegetation response functions (expressed as version 2 of the Probability of Occurrence of Plant Species model for the United States [US-PROPS v2]) was developed based on observations of forest understory and grassland plant species presence/absence and associated abiotic characteristics derived from spatial datasets. Improvements to the US-PROPS model, relative to version 1, were mostly focused on inclusion of additional input data, development of custom species-level input datasets, and implementation of methods to address uncertainty. We investigated the application of US-PROPS v2 to evaluate the potential impacts of atmospheric nitrogen (N) and sulfur (S) deposition, and climate change on forest ecosystems at three forested sites located in New Hampshire, Virginia, and Tennessee in the eastern United States. Species-level N and S critical loads (CLs) were determined under ambient deposition at all three modeled sites. The lowest species-level CLs of N deposition at each site were between 2 and 11 kg N/ha/yr. Similarly, the lowest CLs of S deposition, based on the predicted soil pH response, were less than 2 kg S/ha/yr among the three sites. Critical load exceedance was found at all three model sites. The New Hampshire site included the largest percentage of species in exceedance. Simulated warming air temperature typically resulted in lower maximum occurrence probability, which contributed to lower CLs of N and S deposition. The US-PROPS v2 model, together with the PROPS-CLF model to derive CL functions, can be used to develop site-specific CLs for understory plants within broad regions of the United States. This study demonstrates that species-level CLs of N and S deposition are spatially variable according to the climate, light availability, and soil characteristics at a given location. Although the species niche models generally performed well in predicting occurrence probability, there remains uncertainty with respect to the accuracy of reported CLs. As such, the specific CLs reported here should be considered as preliminary estimates.


Assuntos
Poluição do Ar , Mudança Climática , Ecossistema , Florestas , Nitrogênio/análise , Tennessee , Estados Unidos , Virginia
8.
Environ Pollut ; 234: 902-914, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29253831

RESUMO

Changes in climate and atmospheric nitrogen (N) deposition caused pronounced changes in soil conditions and habitat suitability for many plant species over the latter half of the previous century. Such changes are expected to continue in the future with anticipated further changing air temperature and precipitation that will likely influence the effects of N deposition. To investigate the potential long-term impacts of atmospheric N deposition on hardwood forest ecosystems in the eastern United States in the context of climate change, application of the coupled biogeochemical and vegetation community model VSD+PROPS was explored at three sites in New Hampshire, Virginia, and Tennessee. This represents the first application of VSD+PROPS to forest ecosystems in the United States. Climate change and elevated (above mid-19th century) N deposition were simulated to be important factors for determining habitat suitability. Although simulation results suggested that the suitability of these forests to support the continued presence of their characteristic understory plant species might decline by the year 2100, low data availability for building vegetation response models with PROPS resulted in uncertain results at the extremes of simulated N deposition. Future PROPS model development in the United States should focus on inclusion of additional foundational data or alternate candidate predictor variables to reduce these uncertainties.


Assuntos
Poluição do Ar/análise , Mudança Climática , Árvores/crescimento & desenvolvimento , Ecossistema , Florestas , Modelos Teóricos , Nitrogênio/análise , Nitrogênio/metabolismo , Solo/química , Tennessee , Estados Unidos , Virginia
9.
J Environ Manage ; 181: 681-686, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27566937

RESUMO

Environmental quality standards (EQS) specify the maximum permissible concentration or level of a specific environmental stressor. Here, a procedure is proposed to derive EQS that are specific to a representative species pool and conditional on confounding environmental factors. To illustrate the procedure, a dataset was used with plant species richness observations of grasslands and forests and accompanying soil nitrate-N and pH measurements collected from 981 sampling sites in the Netherlands. Species richness was related to soil nitrate-N and pH with quantile regression allowing for interaction effects. The resulting regression models were used to derive EQS for nitrate conditional on pH, quantified as the nitrate-N concentrations at a specific pH level corresponding with a species richness equal to 95% of the species pool, for both grasslands and forest communities. The EQS varied between 1.8 mg/kg nitrate-N at pH 9-65 mg/kg nitrate-N at pH 4. EQS for forests and grasslands were similar, but EQS based on Red List species richness were considerably lower (more stringent) than those based on overall species richness, particularly at high pH levels. The results indicate that both natural background pH conditions and Red List species are important factors to consider in the derivation of EQS for soil nitrate-N for terrestrial ecosystems.


Assuntos
Monitoramento Ambiental/normas , Nitratos/análise , Plantas , Solo/química , Biodiversidade , Ecossistema , Monitoramento Ambiental/métodos , Florestas , Pradaria , Concentração de Íons de Hidrogênio , Países Baixos , Análise de Regressão
10.
Environ Pollut ; 200: 120-5, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25705854

RESUMO

Quantifying relationships between species richness and single environmental factors is challenging as species richness typically depends on multiple environmental factors. Recently, various methods have been proposed to tackle this challenge. Using a dataset comprising field observations of grassland vegetation and measured pH values, we compared three methods for deriving species richness response curves. One of the methods estimates species richness close to the maximum species richness observed at the sites, whereas the other two provide estimates of the potential species richness along the environmental gradient. Our response curves suggest that potential species richness of grasslands is slightly more sensitive to acidification than realized plant species richness. However, differences in corresponding environmental quality standards (EQS) for acidification were small compared to intrinsic spatial differences in natural soil pH, indicating that natural background values are more important to consider in the derivation of EQS for pH than methodological differences between the three approaches.


Assuntos
Biodiversidade , Monitoramento Ambiental/métodos , Plantas/classificação , Meio Ambiente , Solo
11.
Environ Pollut ; 195: 226-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25255971

RESUMO

Excessive nitrogen input in natural ecosystems is a major threat to biodiversity. A coastal dune area near Amsterdam in the Netherlands suffers from high atmospheric nitrogen deposition affecting sensitive habitats such as fixed coastal dunes with herbaceous vegetation ('grey dunes'). To mitigate its effect year round grazing was applied from 2007 until 2012. In winter, when natural food supply is low, the cattle received supplementary hay that caused additional inputs of nitrogen. Estimates based on nitrogen contents of hay, as well as of manure, showed the input through winter feeding (c. 3-14 kg N ha(-1).y(-1)) is in the same order of magnitude as both the actual deposition (c. 17 kg N ha(-1).y(-1)) and the critical load for a number of herbaceous habitat types (10-15 kg N ha(-1).y(-1)). Locally, the effect of winter feeding adds to the effect of nitrogen redistribution within the area caused by the cattle's terrain usage. We conclude that winter feeding may aggravate effects of atmospheric nitrogen deposition.


Assuntos
Poluentes Atmosféricos/análise , Herbivoria , Nitrogênio/análise , Poluentes do Solo/análise , Criação de Animais Domésticos , Animais , Atmosfera/química , Bovinos , Ecossistema , Esterco , Países Baixos
12.
PLoS One ; 9(8): e103138, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25162657

RESUMO

When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant); the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Meio Ambiente Extraterreno/química , Marte , Lua , Solo/química , Simulação de Ambiente Espacial , Brassicaceae/crescimento & desenvolvimento , Sistemas Ecológicos Fechados , Humanos , Solanum lycopersicum/crescimento & desenvolvimento , Mostardeira/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
13.
PLoS One ; 9(7): e102674, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25054424

RESUMO

Biodiversity, including plant species diversity, is threatened worldwide as a result of anthropogenic pressures such as an increase of pollutants and climate change. Rare species in particular are on the verge of becoming extinct. It is still unclear as to why some plant species are rare and others are not. Are they rare due to: intrinsic reasons, dispersal capacity, the effects of management or abiotic circumstances? Habitat preference of rare plant species may play an important role in determining why some species are rare. Based on an extensive data set of soil parameters we investigated if rarity is due to a narrow habitat preference for abiotic soil parameters. For 23 different abiotic soil parameters, of which the most influential were groundwater-table, soil-pH and nutrient-contents, we estimated species responses for common and rare species. Based on the responses per species we calculated the range of occurrence, the range between the 5 and 95 percentile of the response curve giving the habitat preference. Subsequently, we calculated the average response range for common and rare species. In addition, we designed a new graphic in order to provide a better means for presentation of the results. The habitat preferences of rare species for abiotic soil conditions are significantly narrower than for common species. Twenty of the twenty-three abiotic parameters showed on average significantly narrower habitat preferences for rare species than for common species; none of the abiotic parameters showed on average a narrower habitat preference for common species. The results have major implications for the conservation of rare plant species; accordingly management and nature development should be focussed on the maintenance and creation of a broad range of environmental conditions, so that the requirements of rare species are met. The conservation of (abiotic) gradients within ecosystems is particularly important for preserving rare species.


Assuntos
Biodiversidade , Meio Ambiente , Plantas/metabolismo , Solo/química , Adaptação Fisiológica/fisiologia , Conservação dos Recursos Naturais/métodos , Extinção Biológica , Fenômenos Fisiológicos Vegetais , Plantas/classificação , Densidade Demográfica , Dinâmica Populacional , Especificidade da Espécie
14.
Environ Pollut ; 159(3): 665-76, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21215502

RESUMO

While it is well established that ecosystems display strong responses to elevated nitrogen deposition, the importance of the ratio between the dominant forms of deposited nitrogen (NH(x) and NO(y)) in determining ecosystem response is poorly understood. As large changes in the ratio of oxidised and reduced nitrogen inputs are occurring, this oversight requires attention. One reason for this knowledge gap is that plants experience a different NH(x):NO(y) ratio in soil to that seen in atmospheric deposits because atmospheric inputs are modified by soil transformations, mediated by soil pH. Consequently species of neutral and alkaline habitats are less likely to encounter high NH(4)(+) concentrations than species from acid soils. We suggest that the response of vascular plant species to changing ratios of NH(x):NO(y) deposits will be driven primarily by a combination of soil pH and nitrification rates. Testing this hypothesis requires a combination of experimental and survey work in a range of systems.


Assuntos
Ecossistema , Compostos de Nitrogênio/metabolismo , Nitrogênio/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Recuperação e Remediação Ambiental , Europa (Continente) , Nitrogênio/química , Compostos de Nitrogênio/química , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/metabolismo , Oxirredução , Plantas/química , Poluentes do Solo/química
15.
Ecol Appl ; 20(1): 60-79, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20349830

RESUMO

Field observations and experimental data of effects of nitrogen (N) deposition on plant species diversity have been used to derive empirical critical N loads for various ecosystems. The great advantage of such an approach is the inclusion of field evidence, but there are also restrictions, such as the absence of explicit criteria regarding significant effects on the vegetation, and the impossibility to predict future impacts when N deposition changes. Model approaches can account for this. In this paper, we review the possibilities of static and dynamic multispecies models in combination with dynamic soil-vegetation models to (1) predict plant species composition as a function of atmospheric N deposition and (2) calculate critical N loads in relation to a prescribed protection level of the species composition. The similarities between the models are presented, but also several important differences, including the use of different indicators for N and acidity and the prediction of individual plant species vs. plant communities. A summary of the strengths and weaknesses of the various models, including their validation status, is given. Furthermore, examples are given of critical load calculations with the model chains and their comparison with empirical critical N loads. We show that linked biogeochemistry-biodiversity models for N have potential for applications to support European policy to reduce N input, but the definition of damage thresholds for terrestrial biodiversity represents a major challenge. There is also a clear need for further testing and validation of the models against long-term monitoring or long-term experimental data sets and against large-scale survey data. This requires a focused data collection in Europe, combing vegetation descriptions with variables affecting the species diversity, such as soil acidity, nutrient status and water availability. Finally, there is a need for adaptation and upscaling of the models beyond the regions for which dose-response relationships have been parameterized, to make them generally applicable.


Assuntos
Meio Ambiente , Modelos Biológicos , Nitrogênio/química , Nitrogênio/metabolismo , Plantas/metabolismo , Solo/análise , Fixação de Nitrogênio , Política Pública , Fatores de Tempo
16.
Environ Pollut ; 112(2): 163-9, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11234532

RESUMO

A study was conducted to determine the joint effect of gaseous atmospheric pollutants and trace elements on epiphytic lichens. We used our data to test the hypothesis that lichens are generally insensitive to toxic effects of trace elements, and can therefore be used as accumulator organisms to estimate concentrations of these elements in the environment. In a field study in The Netherlands the abundance of epiphytic lichen species was estimated, and their supporting bark was collected. Concentrations of a range of trace elements were determined in the bark, and concentrations of atmospheric trace gases were estimated at the sites of collection. Multivariate statistics were used to determine the relation between the abundance of the species and pollutant concentrations. Atmospheric SO2 and NO2 appeared to be the most important factors determining lichen biodiversity. Nearly all species were sensitive to these compounds. The effect of the other trace elements was very slight; only Sb had a significantly negative effect on the abundance of a few species. It is concluded that lichens can safely be used as accumulator organisms in pollution studies, provided that concentration in lichen thalli reflect atmospheric concentrations.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental , Líquens , Metais Pesados/efeitos adversos , Dinâmica Populacional
17.
Environ Monit Assess ; 40(2): 185-201, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24198095

RESUMO

Bark flakes were sampled in a biomonitoring survey throughout The Netherlands. Tree species used were oak (65 samples) and 'non-oak' (58 samples) (poplar, elm, willow). Bark elemental analysis was carried out for As, Br, Ca, Cd, Ce, Co, Cr, Cs, Fe, Hg, K, La, Na, Ni, Pb, Rb, Sb, Sc, Se, Sm, Th, and Zn. Furthermore, bark acidity, SO4, NH4 and NO3 were determined. Further variables introduced into the data-set were DIST (closest distance to sea water) and the dummy variably OAK (tree species).Straightforward multivariate correlation analysis was performed to check the effects on bark metal retention of the non-metal pollutants SO4, NH4 and NO3, and of bark acidity. The OAK variable served to identify species-specific metal and non-metal pollutant behaviour. The DIST variable was used to visualize geography(source)-related variations in bark metal and non-metal pollutant concentrations, and to account for the non-random distribution of OAK and non-OAK tree species.The results indicate that the non-oak and oak bark samples may be combined to form 123 samples containing data-set for As, Br, Cd, Ce, Co, Fe, La, Na, Sc, Sm, Th, Zn, NH4, NO4, SO4 and acidity, but not for Rb, Cs, Se, K, Ni, Pb and Sb (species-specific) and for Ca and Hg (H(+)-dependent). In the presented data-set, bark sulphate, ammonia and nitrate could not be shown to significantly affect bark metal retention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...