Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816517

RESUMO

Numerous toxins threaten humans, but specific antidotes are unavailable for most of them. Although CRISPR screening has aided the discovery of the mechanisms of some toxins, developing targeted antidotes remains a significant challenge. Recently, we established a systematic framework to develop antidotes by combining the identification of novel drug targets by using a genome-wide CRISPR screen with a virtual screen of drugs approved by the US Food and Drug Administration. This approach allows for a comprehensive understanding of toxin mechanisms at the whole-genome level and facilitates the identification of promising antidote drugs targeting specific molecules. Here, we present step-by-step instructions for executing genome-scale CRISPR-Cas9 knockout screens of toxins in HAP1 cells. We also provide detailed guidance for conducting an in silico drug screen and an in vivo drug validation. By using this protocol, it takes ~4 weeks to perform the genome-scale screen, 4 weeks for sequencing and data analysis, 4 weeks to validate candidate genes, 1 week for the virtual screen and 2 weeks for in vitro drug validation. This framework has the potential to accelerate the development of antidotes for a wide range of toxins and can rapidly identify promising drug candidates that are already known to be safe and effective. This could lead to the development of new antidotes much more quickly than traditional methods, protecting lives from diverse toxins and advancing human health.

2.
Acta Pharm Sin B ; 14(1): 223-240, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38261805

RESUMO

Lenvatinib, a second-generation multi-receptor tyrosine kinase inhibitor approved by the FDA for first-line treatment of advanced liver cancer, facing limitations due to drug resistance. Here, we applied a multidimensional, high-throughput screening platform comprising patient-derived resistant liver tumor cells (PDCs), organoids (PDOs), and xenografts (PDXs) to identify drug susceptibilities for conquering lenvatinib resistance in clinically relevant settings. Expansion and passaging of PDCs and PDOs from resistant patient liver tumors retained functional fidelity to lenvatinib treatment, expediting drug repurposing screens. Pharmacological screening identified romidepsin, YM155, apitolisib, NVP-TAE684 and dasatinib as potential antitumor agents in lenvatinib-resistant PDC and PDO models. Notably, romidepsin treatment enhanced antitumor response in syngeneic mouse models by triggering immunogenic tumor cell death and blocking the EGFR signaling pathway. A combination of romidepsin and immunotherapy achieved robust and synergistic antitumor effects against lenvatinib resistance in humanized immunocompetent PDX models. Collectively, our findings suggest that patient-derived liver cancer models effectively recapitulate lenvatinib resistance observed in clinical settings and expedite drug discovery for advanced liver cancer, providing a feasible multidimensional platform for personalized medicine.

3.
Gastroenterology ; 166(3): 466-482, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38065340

RESUMO

BACKGROUND & AIMS: Although immunotherapy shows substantial advancement in colorectal cancer (CRC) with microsatellite instability high, it has limited efficacy for CRC with microsatellite stability (MSS). Identifying combinations that reverse immune suppression and prime MSS tumors for current immunotherapy approaches remains an urgent need. METHODS: An in vitro CRISPR screen was performed using coculture models of primary tumor cells and autologous immune cells from MSS CRC patients to identify epigenetic targets that could enhance immunotherapy efficacy in MSS tumors. RESULTS: We revealed EHMT2, a histone methyltransferase, as a potential target for MSS CRC. EHMT2 inhibition transformed the immunosuppressive microenvironment of MSS tumors into an immunomodulatory one by altering cytokine expression, leading to T-cell-mediated cytotoxicity activation and improved responsiveness to anti-PD1 treatment. We observed galectin-7 up-regulation upon EHMT2 inhibition, which converted a "cold" MSS tumor environment into a T-cell-inflamed one. Mechanistically, CHD4 repressed galectin-7 expression by recruiting EHMT2 to form a cotranscriptional silencing complex. Galectin-7 administration enhanced anti-PD1 efficacy in MSS CRC, serving as a potent adjunct cytokine therapy. CONCLUSIONS: Our findings suggest that targeting the EHMT2/galectin-7 axis could provide a novel combination strategy for immunotherapy in MSS CRC.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Imunoterapia , Citocinas , Galectinas/genética , Repetições de Microssatélites , Instabilidade de Microssatélites , Microambiente Tumoral , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase
4.
Comput Struct Biotechnol J ; 21: 4540-4551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810279

RESUMO

Tumor mutation burden (TMB) has emerged as an essential biomarker for assessing the efficacy of cancer immunotherapy. However, due to the inherent complexity of tumors, TMB is not always correlated with the responsiveness of immune checkpoint inhibitors (ICIs). Thus, refining the interpretation and contextualization of TMB is a requisite for enhancing clinical outcomes. In this study, we conducted a comprehensive investigation of the relationship between TMB and multi-omics data across 33 human cancer types. Our analysis revealed distinct biological changes associated with varying TMB statuses in STAD, COAD, and UCEC. While multi-omics data offer an opportunity to dissect the intricacies of tumors, extracting meaningful biological insights from such massive information remains a formidable challenge. To address this, we developed and implemented the PGLCN, a biologically informed graph neural network based on pathway interaction information. This model facilitates the stratification of patients into subgroups with distinct TMB statuses and enables the evaluation of driver biological processes through enhanced interpretability. By integrating multi-omics data for TMB prediction, our PGLCN model outperformed previous traditional machine learning methodologies, demonstrating superior TMB status prediction accuracy (STAD AUC: 0.976 ± 0.007; COAD AUC: 0.994 ± 0.007; UCEC AUC: 0.947 ± 0.023) and enhanced interpretability (BA-House: 1.0; BA-Community: 0.999; BA-Grid: 0.994; Tree-Cycles: 0.917; Tree-Grids: 0.867). Furthermore, the biological interpretability inherent to PGLCN identified the Toll-like receptor family and DNA repair pathways as potential combined biomarkers in conjunction with TMB status in gastric cancer. This finding suggests a potential synergistic targeting strategy with immunotherapy for gastric cancer, thus advancing the field of precision oncology.

5.
Nat Commun ; 14(1): 2241, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193694

RESUMO

The "death cap", Amanita phalloides, is the world's most poisonous mushroom, responsible for 90% of mushroom-related fatalities. The most fatal component of the death cap is α-amanitin. Despite its lethal effect, the exact mechanisms of how α-amanitin poisons humans remain unclear, leading to no specific antidote available for treatment. Here we show that STT3B is required for α-amanitin toxicity and its inhibitor, indocyanine green (ICG), can be used as a specific antidote. By combining a genome-wide CRISPR screen with an in silico drug screening and in vivo functional validation, we discover that N-glycan biosynthesis pathway and its key component, STT3B, play a crucial role in α-amanitin toxicity and that ICG is a STT3B inhibitor. Furthermore, we demonstrate that ICG is effective in blocking the toxic effect of α-amanitin in cells, liver organoids, and male mice, resulting in an overall increase in animal survival. Together, by combining a genome-wide CRISPR screen for α-amanitin toxicity with an in silico drug screen and functional validation in vivo, our study highlights ICG as a STT3B inhibitor against the mushroom toxin.


Assuntos
Hexosiltransferases , Micotoxinas , Humanos , Masculino , Animais , Camundongos , Alfa-Amanitina/farmacologia , Verde de Indocianina/farmacologia , Antídotos , Amanita , Proteínas de Membrana
6.
Mol Ther ; 31(2): 517-534, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36307991

RESUMO

N6-methyladenosine (m6A) is the most pervasive RNA modification and is recognized as a novel epigenetic regulation in RNA metabolism. Although the m6A modification involves various physiological processes, its roles in drug resistance in colorectal cancer (CRC) still remain unknown. We analyzed the RNA expression profile of m6A/A (%) with MRM mass spectrometry in human 5-fluorouracil (5-FU)-resistant CRC tissues, and used the m6A RNA immunoprecipitation assay to validate the m6A-regulated target. Our results have shown that the m6A demethylase FTO was up-regulated in human primary and 5-FU-resistant CRC. Depletion of FTO decreased cell growth, colony formation and metastasis in 5-FU-resistant CRC cells in vitro and in vivo. Mechanistically, we identified SIVA1, a critical apoptotic gene, as a key downstream target of the FTO-mediated m6A demethylation. The m6A demethylation of SIVA1 at the CDS region induced its mRNA degradation via a YTHDF2-dependent mechanism. The SIVA1 levels were negatively correlated with the FTO levels in clinical CRC tissues. Notably, inhibition of FTO significantly reduced the tolerance of 5-FU in 5-FU-resistant CRC cells via the FTO-SIVA1 axis, whereas SIVA1-depletion could restore the m6A-dependent 5-FU sensitivity in CRC cells. In summary, our findings demonstrate a critical role of FTO as an m6A demethylase enhancing chemo-resistance in CRC cells, and suggest that FTO inhibition may restore the sensitivity of chemo-resistant CRC cells to 5-FU.


Assuntos
Neoplasias Colorretais , Epigênese Genética , Humanos , RNA , Fluoruracila/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
7.
Antioxid Redox Signal ; 37(16-18): 1266-1290, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35369726

RESUMO

Significance: Immunotherapy, which utilizes the patient's immune system to fight tumor cells, has been approved for the treatment of some types of advanced cancer. Recent Advances: The complexity and diversity of tumor immunity are responsible for the varying response rates toward current immunotherapy strategies and highlight the importance of exploring regulators in tumor immunotherapy. Several genetic factors have proved to be critical regulators of tumor immunotherapy. RNAs, including messenger RNAs and non-coding RNAs, play vital and diverse roles in tumorigenesis, metastasis, drug resistance, and immunotherapy response. RNA modifications, including N6-methyladenosine methylation, are involved in tumor immunity. Critical Issues: A critical issue is the lack of summary of the regulatory RNA molecules and their derivatives in mediating immune activities in human cancers that could provide potential applications for tumor immunotherapeutic strategy. Future Directions: This review summarizes the dual roles (the light and dark sides) of RNA and its derivatives in tumor immunotherapy and discusses the development of RNA-based therapies as novel immunotherapeutic strategies for cancer treatment. Antioxid. Redox Signal. 37, 1266-1290.


Assuntos
Adenosina , RNA , Humanos , RNA/genética , RNA Mensageiro , Carcinogênese , Transformação Celular Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...