Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909840

RESUMO

Integrators are critical instruments used for magnetic measurement systems (MMSs) in tokamaks, and, currently, the Experimental Advanced Superconducting Tokamak (EAST) has over 600 deployed. However, these integrators, designed with real-time drift compensation, will not be able to support longer pulse operations in the near future due to saturation and drift. To address these issues, this paper proposes a new alternating integration system combining analog integration with drift digital rectification. This system utilizes a microcontroller unit (MCU) to control two parallel analog integrators to work alternatively, compensate their drifts based on their respective error characteristics, and assemble the two integration segments together. The designed architecture provides highly flexible capabilities in operation modes and error correction, which make the system operation and maintenance highly automated. Performance tests on the EAST experiment site show that the prototype integrator can meet the requirements of real-time plasma control for a duration of hour-level.

2.
Rev Sci Instrum ; 93(11): 113501, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461431

RESUMO

The EAST plasmas heated with deuterium neutral beam injection and ion cyclotron resonance heating (ICRH) have been simulated by the TRANSP code. The analysis has been conducted using the full wave solver TORIC5, the radio frequency (RF)-kick operator, and NUBEAM to model the RF heating effects on fast ion velocity distribution. In this work, we present several simulated results compared with experiments for high power EAST scenarios, indicating that the interactions between ICRH and fast ions can significantly accelerate fast ions, which are confirmed by the increased neutron yield and broadened neutron emission spectrum measurements.

3.
Rev Sci Instrum ; 92(4): 043506, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243369

RESUMO

Stilbene crystal detectors are widely used as fast neutron measurement tools based on recoil proton detection, such as liquid scintillators. A compact stilbene crystal neutron spectrometer (CSCNS) has been installed at the Experimental Advanced Superconducting Tokamak (EAST) to obtain information on fuel ions produced in the plasma core because of its merits of good n/γ discrimination capability, high detection efficiency, and fast response. For the first time, CSCNS has been used for neutron emission spectroscopy measurements in EAST plasmas with neutral beam injection (NBI) heating. The CSCNS has the same horizontal line of sight as the time-of-flight enhanced diagnostics neutron spectrometer. Under NBI heating scenarios, the time trace of the neutron yield monitored by the CSCNS is similar to the one monitored by a standard 235U fission chamber. The experimental pulse height spectra are also similar to the simulated ones generated by folding the simulated neutron energy spectrum with the detector response functions. These results demonstrate the capability of the CSCNS for neutron diagnostics and the study of fast-ion physics in EAST.

4.
Rev Sci Instrum ; 92(4): 043552, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243473

RESUMO

Neutron emission spectroscopy and neutron yield measurements are important for high neutral beam injection (NBI) power heating at the Experimental Advanced Superconducting Tokamak (EAST). The neutron yields mainly depend on the deposition from NBI to the deuterium plasmas in the EAST. We have recently used TRANSP with time dependent diagnostic results to simulate the transport process of 30 s long pulse deuterium plasma discharges in the EAST, obtaining the time dependent fast ion distribution, neutron emission spectrum, and total neutron emission rate. Combined with the time trace of the result measured by a standard 235U fission chamber, the effects of different configurations of NBI heating in EAST fusion plasmas have been evaluated.

5.
Phys Rev Lett ; 122(25): 255001, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31347864

RESUMO

A reproducible stationary high-confinement regime with small "edge-localized modes" (ELMs) has been achieved recently in the Experimental Advanced Superconducting Tokamak, which has a metal wall and low plasma rotation as projected for a fusion reactor. We have uncovered that this small ELM regime is enabled by a wide edge transport barrier (pedestal) with a low density gradient and a high density ratio between the pedestal foot and top. Nonlinear simulations reveal, for the first time, that the underlying mechanism for the observed small ELM crashes is the upper movement of the peeling boundary induced by an initial radially localized collapse in the pedestal, which stops the growth of instabilities and further collapse of the pedestal, thus providing a physics basis for mitigating ELMs in future steady-state fusion reactors.

6.
Rev Sci Instrum ; 89(10): 10I143, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399689

RESUMO

The Time-Of-Flight Enhanced Diagnostics (TOFED) neutron spectrometer with a double-ring structure has been installed at the Experimental Advanced Superconducting Tokamak (EAST) to perform advanced neutron emission spectroscopy diagnosis for deuterium plasma. In order to reduce the random coincidence from the background neutrons and gamma-rays, TOFED was moved outside the experimental hall and placed in the newly-built nuclear diagnostics laboratory in 2017. In this paper, the instrument-specific weight functions of TOFED are derived by taking the instrument response matrix and the radial line of sight in this new layout into consideration. The results show that the instrument is predominantly sensitive to counter-passing particles in the region where time-of-flights < 69.4 ns, while events at higher time-of-flights (corresponding lower neutron energies) are mostly representative of co-passing ions. The instrument-specific weight functions express the relationship between data in a given channel of the spectrum and the velocity space region that contributes to that. The results can be applied for energetic particle physics studies at EAST, in particular to compare data from different diagnostic techniques.

7.
Rev Sci Instrum ; 89(10): 10B108, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399705

RESUMO

The motional Stark effect (MSE) diagnostic is applied to measure the safety factor q and current density profile of a tokamak device, which are important parameters in realizing the high-performance and long-pulse steady state of a tokamak. A single-channel MSE diagnostic based on dual photoelastic modulators, whose sightline meets with the neutral beam injection at a major radius of R = 2.12 m, has been built for the D window of the Experimental Advanced Superconducting Tokamak (EAST). According to the requirements of MSE diagnostic polarimetric calibration, a high-precision four-dimensional calibration turntable, driven by four stepping motors and controlled by software running on the computer, was designed for EAST. The turntable allows us to rapidly calibrate the MSE diagnostic in a series of positions and angles during EAST maintenance. The turntable can move in four dimensions of translation, yaw, pitch, and roll of the polarizer and can create linearly polarized light at any given angle with accuracy of ∼0.05° for the MSE system offline calibration. The experimental results of the MSE diagnostic calibration in the laboratory show that the turntable has the advantages of high positioning accuracy, flexible spatial movement, and convenient control and fully meets the calibration requirements of an MSE diagnosis system.

8.
Rev Sci Instrum ; 89(10): 10F112, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399885

RESUMO

Newly developed large-area pixelated two-dimensional detector and two-crystal assemblies were deployed for the first time on tokamaks to enable time-resolved Bragg-diffracted x-ray imaging with good framing rate and water-cooling capabilities for in-vacuum long-pulse operations. High-quality helium-like (He-like) and hydrogen-like (H-like) argon spectra have been observed simultaneously for the first time on a single detector for a wide range of plasma parameters to infer both ion temperature and rotation profiles and support studies on spontaneous rotation, impurity transport, and RF physics. Since tokamak plasmas rotate in both the poloidal (θ) and toroidal (ϕ) directions, a reliable wavelength calibration is needed to account for the correct Doppler shift as well as to compute the spectrometer's instrumental function. Lyα lines emitted from Cd x-ray tubes are proposed to be used as "markers" to provide an in situ calibration of the EAST's X-ray imaging crystal spectrometer systems measuring He- and H-like argon spectra. The first lab test indicated that the X-ray tube can excite strong Lyα lines at 15 kV voltage and 1 mA current when the crystal is shined for 10 min. Other indirect calibration methods using locked-mode discharge scenarios were also studied as complementary methods.

9.
Rev Sci Instrum ; 89(10): 10F110, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399886

RESUMO

A two-crystal X-ray spectrometer system has been implemented in the EAST tokamak to simultaneously diagnose high- and low-temperature plasmas using He- and H-like argon spectra. But for future fusion devices like ITER and Chinese Fusion Engineering Test Reactor (CFETR), argon ions become fully stripped in the core and the intensity of the H-like lines will be significantly at high temperatures (Te > 5 keV). With increasing auxiliary heating power on EAST, the core plasma temperature could also reach 5 keV and higher. In such conditions, the use of a xenon puff becomes an appropriate choice for both ion-temperature and flow-velocity measurements. A new two-crystal system using a quartz 110 crystal (2d = 4.913 Å) to view He-like argon lines and a quartz 011 crystal (2d = 6.686 Å) to view Ne-like xenon spectra has been deployed on a poloidal X-ray crystal spectrometer. While the He-like argon spectra will be used to measure the plasma temperature in the edge plasma region, the Ne-like xenon spectra will be used for measurement in the hot core. The new crystal arrangement allows a wide temperature measurement ranging from 0.5 to 10 keV or even higher, being the first tests for burning plasmas like ITER and CFETR. The preliminary result of lab-tests, Ne-like xenon lines measurement will be presented.

10.
Rev Sci Instrum ; 89(10): 10D119, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399940

RESUMO

The core toroidal charge exchange recombination spectroscopy system on experimental advanced superconducting tokamak (EAST) has been enhanced recently to extend the spectral range. The C VI charge exchange line at 529.059 nm, Ne X line at 524.897 nm, and Li III line at 516.67 nm are observed successfully. The measurements were performed by injecting neon gas and dropping lithium powder simultaneously during the 2016 EAST experimental campaign. One channel connected to a neon lamp is used to perform the real-time wavelength calibration on a shot-to-shot basis. The preliminary results indicate that ion temperature profiles from the carbon and neon impurities are in excellent agreement and provide a consistency check of the measurement from different impurities. Toroidal velocity correction associated with the energy-dependent cross section has been performed. Toroidal rotation of neon impurity is obviously faster than C VI across the whole profile. A cumulative and saturated effect of core lithium ions was observed.

11.
Rev Sci Instrum ; 89(10): 10B103, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399951

RESUMO

Vertical instability control in an elongated plasma is highly desirable for a tokamak reactor. A multi-channel 694 GHz far-infrared laser-based polarimeter-interferometer system has been used to provide a non-inductive vertical position measurement in the long-pulse EAST tokamak. A detailed comparison of vertical position measurements by polarimetry and external inductive flux loops has been used to validate Faraday-effect polarimetry as an accurate high-time response vertical position sensor.

12.
Rev Sci Instrum ; 89(7): 073503, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30068091

RESUMO

Neutral beam attenuation is simulated by means of consulting the ADAS (Atomic Data and Analysis Structure) database based on experimentally diagnosed radial plasma density and electron temperature profiles on the Experimental Advanced Superconducting Tokamak (EAST). Two-dimensional distributions of beam emission and charge exchange recombination photon flux are simulated, taking neutral beam attenuation into account, together with comparison with experimental results of Beam Emission Spectroscopy (BES) and Charge eXchange Recombination Spectroscopy (CXRS). A photon number which is over 1014 promises a sufficient photon flux for typical detectors of BES, CXRS, and UltraFast-CXRS (UF-CXRS) diagnostics. Evidence shows that the ADAS database overvalues neutral beam injection effective stopping coefficient on the EAST tokamak. The joint diagnostic of BES and UF-CXRS which is under development to measure plasma pressure with a high temporal resolution of 1 µs will have strong signals in a radial range of 0.6 < ρ < 0.8. The steep gradients of plasma density and C6+ density at ρ ∼ 1 bring great difficulty to edge plasma investigation by this joint diagnostic.

13.
Rev Sci Instrum ; 88(8): 083505, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28863624

RESUMO

Beam Emission Spectroscopy (BES) diagnostic based on Neutron Beam Injection (NBI) on the Experimental Advanced Superconducting Tokamak has been developed. This system consists of 16 × 8 channels which can diagnose the density fluctuation in a rectangular area of about 20 × 10 cm2 in the cross section, whose radial position is adjustable from the core to edge just by means of changing the angle of the rotation mirror. The spatial resolution is about 1-3 cm according to the diagnosed radial position. The temporal resolution is 1 µs. Space calibration of the diagnostic system is done based on the reversibility of the optical path. The NBI modulation experiment shows the success of BES development.

14.
Rev Sci Instrum ; 87(11): 11D839, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910590

RESUMO

An alternating integrator has been designed for the Experimental Advanced Superconducting Tokamak that is intended for long pulse operation of up to 1000 s. The electromagnetic operating environment for the device is so complex that it could affect the performance of the integrator. The new integrator system is carefully designed and actualized based on specific reduced electromagnetic interference requirements, which were formulated based on consideration of processing of the input signals, the isolation properties, and the circuit board layout and grounding. The developed integrator shows excellent electromagnetic compatibility and low-drift properties.

15.
Rev Sci Instrum ; 87(11): 11D842, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910616

RESUMO

As one of the core subsystems of the Experimental Advanced Superconducting Tokamak (EAST), the poloidal field power system supplies energy to EAST's superconducting coils. To measure the converter current in the poloidal field power system, a current measurement system has been designed. The proposed measurement system is composed of a Rogowski coil and a newly designed integrator. The results of the resistor-inductor-capacitor discharge test and the converter equal current test show that the current measurement system provides good reliability and stability, and the maximum error of the proposed system is less than 1%.

16.
Rev Sci Instrum ; 87(11): 11E539, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910672

RESUMO

A Charge eXchange Recombination Spectroscopy (CXRS) diagnostic system has been developed to measure profiles of ion temperature and rotation since 2014 on EAST. Several techniques have been developed to improve the spatial calibration of the CXRS diagnostic. The sightline location was obtained by measuring the coordinates of three points on each sightline using an articulated flexible coordinate measuring arm when the vessel was accessible. After vacuum pumping, the effect of pressure change in the vacuum vessel was evaluated by observing the movement of the light spot from back-illuminated sightlines on the first wall using the newly developed articulated inspection arm. In addition, the rotation of the periscope after vacuum pumping was derived by using the Doppler shift of neutral beam emission spectra without magnetic field. Combining these techniques, improved spatial calibration was implemented to provide a complete and accurate description of the EAST CXRS system. Due to the effects of the change of air pressure, a ∼0.4° periscope rotation, yielding a ∼20 mm movement of the major radius of observation positions to the lower field side, was derived. Results of Zeeman splitting of neutral beam emission spectra with magnetic field also showed good agreement with the calibration results.

17.
Rev Sci Instrum ; 87(11): 11D903, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910346

RESUMO

A double-pass, radially viewing, far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique has been implemented for diagnosing the plasma current and electron density profiles in the Experimental Advanced Superconducting Tokamak (EAST). POINT has been operated routinely during the most recent experimental campaign and provides continuous 11 chord line-integrated Faraday effect and density measurement throughout the entire plasma discharge for all heating schemes and all plasma conditions (including ITER relevant scenario development). Reliability of both the polarimetric and interferometric measurements is demonstrated in 25 s plasmas with H-mode and 102 s long-pulse discharges. Current density, safety factor (q), and electron density profiles are reconstructed using equilibrium fitting code (EFIT) with POINT constraints for the plasma core.

18.
Rev Sci Instrum ; 87(11): 11D836, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910376

RESUMO

The 2.5 MeV TOFED (Time-Of-Flight Enhanced Diagnostics) neutron spectrometer with a double-ring structure has been installed at Experimental Advanced Superconducting Tokamak (EAST) to perform advanced neutron emission spectroscopy diagnosis of deuterium plasmas. This work describes the response function of the TOFED spectrometer, which is evaluated for the fully assembled instrument in its final layout. Results from Monte Carlo simulations and dedicated experiments with pulsed light sources are presented and used to determine properties of light transport from the scintillator. A GEANT4 model of the TOFED spectrometer was developed to calculate the instrument response matrix. The simulated TOFED response function was successfully benchmarked against measurements of the time-of-flight spectra for quasi-monoenergetic neutrons in the energy range of 1-4 MeV. The results are discussed in relation to the capability of TOFED to perform beam ion studies on EAST.

19.
Rev Sci Instrum ; 87(11): 11D834, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910466

RESUMO

Full function integrated, compact solid state neutral particle analyzers (ssNPA) based on absolute extreme ultraviolet silicon photodiode have been successfully implemented on the experimental advanced superconducting tokamak to measure energetic particle. The ssNPA system has been operated in advanced current mode with fast temporal and spatial resolution capabilities, with both active and passive charge exchange measurements. It is found that the ssNPA flux signals are increased substantially with neutral beam injection (NBI). The horizontal active array responds to modulated NBI beam promptly, while weaker change is presented on passive array. Compared to near-perpendicular beam, near-tangential beam brings more passive ssNPA flux and a broader profile, while no clear difference is observed on active ssNPA flux and its profile. Significantly enhanced intensities on some ssNPA channels have been observed during ion cyclotron resonant heating.

20.
Rev Sci Instrum ; 87(11): 11D820, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910514

RESUMO

Neutron diagnostics have become a significant means to study energetic particles in high power auxiliary heating plasmas on the Experimental Advanced Superconducting Tokamak (EAST). Several kinds of neutron diagnostic systems have been implemented for time-resolved measurements of D-D neutron flux, fluctuation, emission profile, and spectrum. All detectors have been calibrated in laboratory, and in situ calibration using 252Cf neutron source in EAST is in preparation. A new technology of digitized pulse signal processing is adopted in a wide dynamic range neutron flux monitor, compact recoil proton spectrometer, and time of flight spectrometer. Improvements will be made continuously to the system to achieve better adaptation to the EAST's harsh γ-ray and electro-magnetic radiation environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...