Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e16766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250730

RESUMO

Inland salt marsh wetlands have very important ecological functions in semi-arid areas. However, degradation and soil desertification have impacted these areas, making it necessary to study the impact of wetland restoration years on the soil quality of salt marsh wetland. We used remote sensing methods, field surveys, and inquiries to examine the seasonal profile effects of two-, four-, and six-year restoration periods on total nitrogen (TN), total phosphorus (TP) and the ratio of nitrogen to phosphorus (N:P) in P. australis and S. triqueter wetland natural states. Our results showed that soil TN in P. australis wetland in restored conditions was higher than that in natural conditions. The average soil TP of the S. triqueter wetlands at 0-10 cm, 10-20 cm, 20-30 cm, and 30-40 cm layers was 0.36 g/kg, 0.31 g/kg, 0.21 g/kg, and 0.17 g/kg s in September, respectively. The soil TP of the S. triqueter wetland increased slightly over the entire growing season. The restoration years had a great influence on the soil TP of the S. triqueter wetland from May to July. The soil TN in the P. australis wetland was almost restored to its natural condition in each layer during the six-year restoration period. The soil TP of the S. triqueter wetland was higher in the restored two-year period and showed a decreasing trend with an increased soil depth. Our conclusions can significantly guide the restoration of inland salt marsh wetlands.


Assuntos
Nitrogênio , Áreas Alagadas , Fósforo , Projetos de Pesquisa , Solo
2.
Artigo em Inglês | MEDLINE | ID: mdl-36834387

RESUMO

Carbon storage is one of the key factors determining the global carbon balance in the terrestrial ecosystems. Predicting future changes in carbon storage is significant for regional sustainable development in the background of the "dual carbon" objective. This study which coupled the InVEST model and the PLUS model and is based on land use in different future scenarios evaluated the evolution characterization of terrestrial carbon storage in Jilin Province from 2000 to 2040 and explored the impact of related factors on it. The results show that: (1) from 2000 to 2020, the area of cultivated land and built-up areas increased continuously in Jilin Province, while the area of forest land, grassland, and wetland decreased with time; the ecological land has been restored to a certain degree. (2) Due to the continuous reduction in ecological land, the overall carbon storage in Jilin Province from 2000 to 2020 showed a downward trend, with a total reduction of 30.3 Tg, and the carbon storage in the western part of Jilin Province changed significantly. The SSP2-RCP4.5 scenario shows a minimum value of carbon storage in 2030 and a small increase in 2040; the SSP1-RCP2.6 scenario shows an increasing trend in carbon storage from 2020 to 2040; the area of built-up areas and cultivated land increases and the loss in carbon storage is more serious under the SSP5-RCP8.5 scenario. (3) On the whole, with the increase in elevation and slope, the carbon storage showed a trend of increasing first and then decreasing, and the carbon storage of shady and semi-shady slopes was higher than that of sunny and semi-sunny slopes; forest land and cultivated land were the keys to carbon storage changes in Jilin Province.


Assuntos
Carbono , Ecossistema , Florestas , Áreas Alagadas , China , Conservação dos Recursos Naturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...