Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 7: 116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821399

RESUMO

Grapevine (Vitis vinifera), one of the most economically important fruit crops in the world, suffers significant yield losses from powdery mildew, a major fungal disease caused by Erysiphe necator. In addition to suppressing host immunity, phytopathogens modulate host proteins termed susceptibility (S) factors to promote their proliferation in plants. In this study, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) technology was used to enable the targeted mutagenesis of MLO (mildew resistance Locus O) family genes that are thought to serve as S factors for powdery mildew fungi. Small deletions or insertions were induced in one or both alleles of two grapevine MLO genes, VvMLO3 and VvMLO4, in the transgenic plantlets of the powdery mildew-susceptible cultivar Thompson Seedless. The editing efficiency achieved with different CRISPR/Cas9 constructs varied from 0 to 38.5%. Among the 20 VvMLO3/4-edited lines obtained, one was homozygous for a single mutation, three harbored biallelic mutations, seven were heterozygous for the mutations, and nine were chimeric, as indicated by the presence of more than two mutated alleles in each line. Six of the 20 VvMLO3/4-edited grapevine lines showed normal growth, while the remaining lines exhibited senescence-like chlorosis and necrosis. Importantly, four VvMLO3-edited lines showed enhanced resistance to powdery mildew, which was associated with host cell death, cell wall apposition (CWA) and H2O2 accumulation. Taken together, our results demonstrate that CRISPR/Cas9 genome-editing technology can be successfully used to induce targeted mutations in genes of interest to improve traits of economic importance, such as disease resistance in grapevines.

2.
Plant Sci ; 267: 20-31, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29362096

RESUMO

Powdery mildew is the most economically important disease of cultivated grapevines worldwide. Here, we report that the Arabidopsis broad-spectrum disease resistance gene RPW8.2 could improve resistance to powdery mildew in Vitis vinifera cv. Thompson Seedless. The RPW8.2-YFP fusion gene was stably expressed in grapevines from either the constitutive 35S promoter or the native promoter (NP) of RPW8.2. The grapevine shoots and plantlets transgenic for 35S::RPW8.2-YFP showed reduced rooting and reduced growth at later development stages in the absence of any pathogens. Infection tests with an adapted grapevine powdery mildew isolate En NAFU1 showed that hyphal growth and sporulation were significantly restricted in transgenic grapevines expressing either of the two constructs. The resistance appeared to be attributable to the ectopic expression of RPW8.2, and associated with the enhanced encasement of the haustorial complex (EHC) and onsite accumulation of H2O2. In addition, the RPW8.2-YFP fusion protein showed focal accumulation around the fungal penetration sites. Transcriptome analysis revealed that ectopic expression of RPW8.2 in grapevines not only significantly enhanced salicylic acid-dependent defense signaling, but also altered expression of other phytohormone-associated genes. Taken together, our results indicate that RPW8.2 could be utilized as a transgene for improving resistance against powdery mildew in grapevines.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ascomicetos/fisiologia , Resistência à Doença , Expressão Ectópica do Gene , Doenças das Plantas/genética , Vitis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Vitis/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA