Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(36): e2203224, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35853614

RESUMO

Urinalysis is attractive in non-invasive early diagnosis of bladder cancer compared with clinical gold standard cystoscopy. However, the trace bladder tumor biomarkers in urine and the particularly complex urine environment pose significant challenges for urinalysis. Here, a clinically adoptable urinalysis device that integrates molecular-specificity indium gallium zinc oxide field-effect transistor (IGZO FET) biosensor arrays, a device control panel, and an internet terminal for directly analyzing five bladder-tumor-associated proteins in clinical urine samples, is reported for bladder cancer diagnosis and classification. The IGZO FET biosensors with engineered sensing interfaces provide high sensitivity and selectivity for identification of trace proteins in the complex urine environment. Integrating with a machine-learning algorithm, this device can identify bladder cancer with an accuracy of 95.0% in a cohort of 197 patients and 75 non-bladder cancer individuals, distinguishing cancer stages with an overall accuracy of 90.0% and assessing bladder cancer recurrence after surgical treatment. The non-invasive urinalysis device defines a robust technology for remote healthcare and personalized medicine.


Assuntos
Técnicas Biossensoriais , Neoplasias da Bexiga Urinária , Óxido de Zinco , Biomarcadores Tumorais , Cistoscopia , Eletrônica , Humanos , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/urina , Urinálise , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/cirurgia
2.
ACS Appl Mater Interfaces ; 10(1): 593-601, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29243904

RESUMO

The growth and proliferation of Li dendrites during repeated Li cycling has long been a crucial issue that hinders the development of secondary Li-metal batteries. Building a stable and robust solid state electrolyte interphase (SEI) on the Li-anode surface is regarded as a promising strategy to overcome the dendrite issues. In this work, we report a simple strategy to engineer the interface chemistry of Li-metal anodes by using tiny amounts of dimethyl sulfate (DMS, C2H6SO4) as the SEI-forming additive. With the preferential reduction of DMS, an SEI layer composed of Li2S/Li2O forms on the Li surface. This inorganic SEI layer features high structural modulus and low interfacial resistant, enabling a dense and dendrite-free Li deposition as evidenced by scanning electron microscopy, atomic force microscopy, and in situ optical images. In addition, this SEI layer can prevent the deposited Li from direct contact with corrosive electrolytes, thus rendering an improved cycling stability of Li anodes with an average Coulombic efficiency of 97% for up to 150 cycles. When the DMS additive is introduced into a Li/NCM full cell, the cycle life of Li-metal batteries can be also improved significantly. This work demonstrates a feasible route to suppress Li dendrite growth by designing appropriate film-forming additives to regulate the interfacial properties of the SEI layer, and also the sulfonyl-based derivatives revealed in this work represent a large variety of new film-forming molecules, providing a broad selectivity for constructing high efficiency and cycle-stable Li anodes to address the intrinsic problems of rechargeable Li-metal batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...