Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(23): 23498-23511, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37971533

RESUMO

Rapid endothelialization of cardiovascular materials can enhance the vascular remodeling performance. In this work, we developed a strategy for amyloid-like protein-assembly-mediated interfacial engineering to functionalize a biomimetic nanoparticle coating (BMC). Various groups (e.g., hydroxyl and carboxyl) on the BMC are responsible for chelating Zn2+ ions at the stent interface, similar to the glutathione peroxidase-like enzymes found in vivo. This design could reproduce the release of therapeutic nitric oxide gas (NO) and an aligned microenvironment nearly identical with that of natural vessels. In a rabbit abdominal aorta model, BMC-coated stents promoted vascular healing through rapid endothelialization and the inhibition of intimal hyperplasia in the placement sites at 4, 12, and 24 weeks. Additionally, better anticoagulant activity and immunomodulation in the BMC stents were also confirmed, and vascular healing was mainly dependent on cell signaling through the cyclic guanosine monophosphate-protein kinase G (cGMP-PKG) cascade. Overall, a metal-polypeptide-coated stent was developed on the basis of its detailed molecular mechanism of action in vascular remodeling.


Assuntos
Muramidase , Nanopartículas , Animais , Coelhos , Remodelação Vascular , Zinco , Materiais Revestidos Biocompatíveis/farmacologia , Stents , Compostos Orgânicos
2.
Biomaterials ; 302: 122346, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37832504

RESUMO

Drug-eluting stents have become one of the most effective methods to treat cardiovascular diseases. However, this therapeutic strategy may lead to thrombosis, stent restenosis, and intimal hyperplasia and prevent re-endothelialization. In this study, we selected 3-aminophenylboronic acid-modified hyaluronic acid and carboxylate chitosan as polyelectrolyte layers and embedded an epigallocatechin-3-gallate-tanshinone IIA sulfonic sodium (EGCG-TSS) complex to develop a sandwich-like layer-by-layer coating. The introduction of a functional molecular EGCG-TSS complex improved not only the biocompatibility of the coating but also its stability by enriching the interaction between the polyelectrolyte coatings through electrostatic interactions, hydrogen bonding, π-π stacking, and covalent bonding. We further elucidated the effectiveness of sandwich-like coatings in regulating the inflammatory response, smooth muscle cell growth behavior, stent thrombosis and restenosis suppression, and vessel re-endothelialization acceleration via in vivo and in vitro. Conclusively, we demonstrated that sandwich-like coating assisted by an EGCG-TSS complex may be an effective surface modification strategy for cardiovascular therapeutic applications.


Assuntos
Stents Farmacológicos , Trombose , Humanos , Polifenóis/farmacologia , Polieletrólitos , Stents
3.
Biomaterials ; 302: 122288, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37677917

RESUMO

Drug-eluting stents (DESs) implantation is an effective method to tackle in-stent restenosis (ISR), which has been considered as an efficient treatment for coronary atherosclerosis. Although fruitful results have been achieved in treating coronary artery diseases (CAD), concern has arisen regarding the long-term safety and efficacy of DESs, primarily due to adverse events such as delayed re-endothelialization, persistent inflammatory response, and late stent thrombosis (LST). Taking inspiration from the immunomodulatory functions of camouflage strategies, this study designed a bio-inspired nanoparticle-coated stent. Briefly, the platelet membrane-coated poly (lactic-co-glycolic acid)/Rapamycin nanoparticles (PNP) were sprayed onto stents, forming a homogenous nanoparticle coating. The bilayer of poly (lactic-co-glycolic acid) (PLGA) and platelet membrane works synergistically to promote the sustained-release effect of rapamycin. In vitro studies revealed that the PNP-coated surfaces promoted the competitive adhesion of endothelia cells while inhibiting smooth muscle cells. Subsequent in vivo studies demonstrated that these surfaces expedite re-endothelialization and elicit immunomodulatory effects by regulating the cGMP-PKG and NF-kappa B signaling pathways, influencing the biosynthesis cofactors and immune system signaling. The study successfully deviced a novel and biomimetic drug-eluting stent system, unraveling its detailed functions and molecular mechanism of action for enhanced vascular healing.


Assuntos
Stents Farmacológicos , Nanopartículas , NF-kappa B , Stents , Transdução de Sinais , Sirolimo
4.
Biomaterials ; 287: 121654, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35842980

RESUMO

The introduction of drug-eluting stents (DESs) have yield a significant reduction in the incidence of re-stenosis, however, challenges remain including incomplete healing of the endothelium, inflammatory response and thrombogenesis at the site of vascular wall injury. Here, we developed a novel stent with polyphenol-polyamine surface combining the biological functions of nitric oxide gas and VEGF, selectively promoting the proliferation and migration of endothelial cells while suppressing smooth muscle cells. Compared with bare PLLA stents and traditional DESs, the functionalized stents enhanced vascular healing through remarkable inhibiting intimal hyperplasia and occurrence of thrombosis, accelerating the in-situ endothelium repair. Moreover, it showed a down-regulation of injury vascular inflammation response and reduction of the vessel wall injury in New Zealand Rabbits after 1- and 3-month implantation.

5.
ACS Nano ; 16(4): 6585-6597, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35301848

RESUMO

Localized drug delivery from drug-eluting stents (DESs) to target sites provides therapeutic efficacy with minimal systemic toxicity. However, DESs failure may cause thrombosis, delay arterial healing, and impede re-endothelialization. Bivalirudin (BVLD) and nitric oxide (NO) promote arterial healing. Nevertheless, it is difficult to combine hydrophilic signal molecules with hydrophobic antiproliferative drugs while maintaining their bioactivity. Here, we fabricated a micro- to nanoscale network assembly consisting of copper ion and epigallocatechin gallate (EGCG) via π-π interactions, metal coordination, and oxidative polymerization. The network incorporated rapamycin and immobilized BVLD by the thiol-ene "click" reaction and provided sustained rapamycin and NO release. Unlike rapamycin-eluting stents, those coated with the EGCG-Cu-rapamycin-BVLD complex favored competitive endothelial cell (EC) growth over that of smooth muscle cells, exhibited long-term antithrombotic efficacy, and attenuated the negative impact of rapamycin on the EC. In vivo stent implantation demonstrated that the coating promoted endothelial regeneration and hindered restenosis. Therefore, the polyphenol-network-mediated surface chemistry can be an effective strategy for the engineering of multifunctional surfaces.


Assuntos
Polifenóis , Stents , Humanos , Polifenóis/farmacologia , Polifenóis/metabolismo , Sirolimo/farmacologia , Miócitos de Músculo Liso/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo
6.
J Mech Behav Biomed Mater ; 126: 105044, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34915359

RESUMO

Hydrogel wound dressings with good flexibility and adhesiveness to resist deformation during wound movement are urgently needed in clinical application. In this work, the hydrogels based on poly (acrylic acid) and N-hydroxysuccinimide grafted hyaluronic acid (PAA/HA-NHS) with good elasticity and adhesiveness were prepared by chemical cross-linking and hydrogen bonding. The elastic and adhesive properties within the PAA hydrogels could reach a balance by adjusting the concentration of potassium persulfate (KPS) and N, N'-methylenebisacrylamide (MBA). Subsequently, HA-NHS was incorporated into the PAA hydrogel system. The mechanical test revealed that the elongation at break and interfacial toughness of the PAA/HA-NHS hydrogels could reach 265.79 ± 21.93% and 52.88 ± 3.51 J/m2, respectively. In addition, the hydrogels possess a connected porous network and well water absorption ability (with porosity of 51.90 ± 0.11% and swelling ratio in wet state of 122.17 ± 2.78%). In vitro experiment demonstrates that the PAA/HA-NHS hydrogels exhibit nontoxic and cell in-adhesive properties. The PAA/HA-NHS hydrogels could cover the wound spots directly, stretch with the skin movement and gently remove from the wound tissue due to the suitable adhesiveness and poor cell adhesion. In conclusion, the PAA/HA-NHS hydrogels show great application value in the field of wound dressing.


Assuntos
Ácido Hialurônico , Hidrogéis , Acrilatos , Adesivos , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...