Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Oncol ; 50: 102137, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39307030

RESUMO

Colorectal cancer (CRC) is one of the most common malignant cancers. Emodin is a lipophilic anthraquinone commonly found in medicinal herbs and known for its antitumor properties. However, its clinical utility has been hampered by low druggability. We designed and synthesized a new compound named Emodin succinimidyl ethyl ester (ESEE), which improves the bioavailability and preserves the original pharmacological effects of Emodin. In vitro, we have confirmed that ESEE induces apoptosis in colon cancer cells, suppresses cell proliferation, migration, and invasion, and inhibits the growth of subcutaneous transplantation tumors associated with colon cancer. And, in vivo, ESEE robustly inhibited tumor growth. Human Ether-a-go-go Related Gene (hERG) is aberrantly expressed in various cancer cells, where they play an important role in cancer progression. Focal adhesion kinase (FAK) is a tyrosine kinase overexpressed in cancer cells and plays an important role in the progression of tumors to a malignant phenotype. Mechanistically, the anti-CRC properties of ESEE are exerted through direct binding with hERG, which impedes the FAK/PI3K/AKT signaling axis-dependent apoptotic cascade.

2.
Biomed Pharmacother ; 168: 115797, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913735

RESUMO

Triple negative breast cancer (TNBC) presents a formidable challenge due to the lack of effective treatment modalities. Immunotherapy stands as a promising therapeutic approach; however, the emergence of drug resistance mechanisms within tumor cells, particularly those targeting apoptosis and pyroptosis, has hampered its clinical efficacy. SHP2 is intricately involved in diverse physiological processes, including immune cell proliferation, infiltration, and tumor progression. Nevertheless, the precise contribution of SHP2 to tumor cell pyroptosis resistance remains inadequately understood. Herein, we demonstrate that SHP2 inhibition hampers the proliferative, migratory, and invasive capabilities of TNBC, accompanied by noticeable alterations in cellular membrane architecture. Mechanistically, we provide evidence that SHP2 depletion triggers the activation of Caspase-1 and GSDMD, resulting in GSDMD-dependent release of LDH, IL-1ß, and IL-18. Furthermore, computational analyses and co-localization investigations substantiate the hypothesis that SHP2 may hinder pyroptosis through direct binding to JNK, thereby impeding JNK phosphorylation. Our cellular experiments further corroborate these findings by demonstrating that JNK inhibition rescues pyroptosis induced by SHP2 knockdown. Strikingly, in vivo experiments validate the suppressive impact of SHP2 knockdown on tumor progression via enhanced JNK phosphorylation. Additionally, SHP2 knockdown augments tumor sensitivity to anti-PD-1 therapy, thus reinforcing the pro-pyroptotic effects and inhibiting tumor growth. In summary, our findings elucidate the mechanism by which SHP2 governs TNBC pyroptosis, underscoring the potential of SHP2 inhibition to suppress cell pyroptosis resistance and its utility as an adjunctive agent for tumor immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Piroptose , Neoplasias de Mama Triplo Negativas , Humanos , Caspase 1 , Inibidores de Checkpoint Imunológico/uso terapêutico , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA