Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(20): e2300402, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37171794

RESUMO

The peroxisome is a ubiquitous organelle in rodent cells and plays important roles in a variety of cell types and tissues. It is previously indicated that peroxisomes are associated with auditory function, and patients with peroxisome biogenesis disorders (PBDs) are found to have hearing dysfunction, but the specific role of peroxisomes in hearing remains unclear. In this study, two peroxisome-deficient mouse models (Atoh1-Pex5-/- and Pax2-Pex5-/- ) are established and it is found that peroxisomes mainly function in the hair cells of cochleae. Furthermore, peroxisome deficiency-mediated negative effects on hearing do not involve mitochondrial dysfunction and oxidative damage. Although the mammalian target of rapamycin complex 1 (mTORC1) signaling is shown to function through peroxisomes, no changes are observed in the mTORC1 signaling in Atoh1-Pex5-/- mice when compared to wild-type (WT) mice. However, the expression of large-conductance, voltage-, and Ca2+ -activated K+ (BK) channels is less in Atoh1-Pex5-/- mice as compared to the WT mice, and the administration of activators of BK channels (NS-1619 and NS-11021) restores the auditory function in knockout mice. These results suggest that peroxisomes play an essential role in cochlear hair cells by regulating BK channels. Hence, BK channels appear as the probable target for treating peroxisome-related hearing diseases such as PBDs.


Assuntos
Perda Auditiva , Canais de Potássio Ativados por Cálcio de Condutância Alta , Camundongos , Animais , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Peroxissomos/metabolismo , Células Ciliadas Auditivas/metabolismo , Camundongos Knockout , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mamíferos/metabolismo
2.
FASEB J ; 36(6): e22373, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35621716

RESUMO

Cisplatin is a widely used chemotherapeutic agent. However, its clinical utility is limited because of cisplatin-induced ototoxicity. Glutathione S-transferase (GST) was found to play a vital role in reducing cisplatin ototoxicity in mice. Deletion polymorphisms of GSTM1 and GSTT1, members of the GST family, are common in humans and are presumed to be associated with cisplatin-induced hearing impairment. However, the specific roles of GSTM1 and GSTT1 in cisplatin ototoxicity are not completely clear. Here, under cisplatin treatment, simultaneous deletion of Gstm1 and Gstt1 lead to a more profound hearing loss in CBA/CaJ mice (Gstm1/Gstt1-DKO) than in wild-type mice. The Gstm1/Gstt1-DKO mice, in which phase II detoxification genes were upregulated, exhibited more severe oxidative stress and higher outer hair cell apoptosis in the cochleae than the control mice. Thus, our study revealed that Gstm1 and Gstt1 protect auditory hair cells from cisplatin-induced ototoxicity in the CBA/CaJ mice, and genetic screening for GSTM1 and GSTT1 polymorphisms could help determine a standard cisplatin dose for cancer patients undergoing chemotherapy.


Assuntos
Cisplatino , Glutationa Transferase , Ototoxicidade , Animais , Cisplatino/toxicidade , Glutationa Transferase/genética , Humanos , Camundongos , Camundongos Endogâmicos CBA , Camundongos Endogâmicos , Ototoxicidade/etiologia , Ototoxicidade/genética , Ototoxicidade/prevenção & controle , Polimorfismo Genético
3.
Front Cell Neurosci ; 15: 692762, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211374

RESUMO

Aminoglycosides, a class of clinically important drugs, are widely used worldwide against gram-negative bacterial infections. However, there is growing evidence that aminoglycosides can cause hearing loss or balance problems. In this article, we mainly introduce the main mechanism of ototoxicity induced by aminoglycosides. Genetic analysis showed that the susceptibility of aminoglycosides was attributable to mutations in mtDNA, especially A1555G and C1494T mutations in 12S rRNA. In addition, the overexpression of NMDA receptors and the formation of free radicals also play an important role. Understanding the mechanism of ototoxicity induced by aminoglycosides is helpful to develop new therapeutic methods to protect hearing. In this article, the prevention methods of ototoxicity induced by aminoglycosides were introduced from the upstream and downstream aspects.

4.
Front Cell Dev Biol ; 9: 683495, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150778

RESUMO

Collagens are major constituents of the extracellular matrix (ECM) that play an essential role in the structure of the inner ear and provide elasticity and rigidity when the signals of sound are received and transformed into electrical signals. LOXL3 is a member of the lysyl oxidase (LOX) family that are copper-dependent amine oxidases, generating covalent cross-links to stabilize polymeric elastin and collagen fibers in the ECM. Biallelic missense variant of LOXL3 was found in Stickler syndrome with mild conductive hearing loss. However, available information regarding the specific roles of LOXL3 in auditory function is limited. In this study, we showed that the Col2a1-Cre-mediated ablation of Loxl3 in the inner ear can cause progressive hearing loss, degeneration of hair cells and secondary degeneration of spiral ganglion neurons. The abnormal distribution of type II collagen in the spiral ligament and increased inflammatory responses were also found in Col2a1-Loxl3-/- mice. Amino oxidase activity exerts an effect on collagen; thus, Loxl3 deficiency was expected to result in the instability of collagen in the spiral ligament and the basilar membrane, which may interfere with the mechanical properties of the organ of Corti and induce the inflammatory responses that are responsible for the hearing loss. Overall, our findings suggest that Loxl3 may play an essential role in maintaining hearing function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...