Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(20): 9538-9546, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37818838

RESUMO

Exciton-polaritons are composite quasiparticles that result from the coupling of excitonic transitions and optical modes. They have been extensively studied because of their quantum phenomena and potential applications in unconventional coherent light sources and all-optical control elements. In this work, we report the observation of Bose-Einstein condensation of the upper polariton branch in a transferable WS2 monolayer microcavity. Near the condensation threshold, we observe a nonlinear increase in upper polariton intensity accompanied by a decrease in line width and an increase in temporal coherence, all of which are hallmarks of Bose-Einstein condensation. Simulations show that this condensation occurs within a specific particle density range, depending on the excitonic properties and pumping conditions. The manifestation of upper polariton condensation unlocks new possibilities for studying the condensate competition while linking it to practical realizations in polaritonic lasers. Our findings contribute to the understanding of bosonic systems and offer potential for the development of polaritonic devices.

2.
Nano Lett ; 21(18): 7669-7675, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34516139

RESUMO

Two-dimensional monolayer structures of transition metal dichalogenides (TMDs) have been shown to allow many higher-order excitonic bound states, including trions (charged excitons), biexcitons (excitonic molecules), and charged biexcitons. We report here experimental evidence and the theoretical basis for a new bound excitonic complex, consisting two free carriers bound to an exciton in a bilayer structure. Our experimental measurements on structures made using two different materials show a new spectral line at the predicted energy with two different TMD materials (MoSe2 and WSe2) with both n- and p-doping if and only if all the required theoretical conditions for this complex are fulfilled, in particular, only in the presence of a parallel metal layer that significantly screens the repulsive interaction between the like-charge carriers. Because these four-carrier bound states are charged bosons, they could eventually be the basis for a new path to superconductivity without Cooper pairing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...