Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 67-74, 2024 Jan 10.
Artigo em Chinês | MEDLINE | ID: mdl-38171562

RESUMO

OBJECTIVE: To explore the genetic basis of two children with unexplained psychomotor developmental delay and facial dysmorphisms suggestive of Coffin-Siris syndrome (CSS). METHODS: A boy and a girl suspected for CSS at the 980th Hospital of the People's Liberation Army Joint Service Support Force respectively in July 2019 and January 2021, and seven members from their families, were selected as the study subjects. Clinical data and family history of the children were collected, and detailed physical examination was carried out, in addition with laboratory and related auxiliary examinations. Potential variants and copy number variations (CNVs) were detected by whole exome sequencing (WES) and copy number variation sequencing (CNV-seq). RESULTS: Child 1, an 8-month-old female, had featured microcephaly, atrial septal defect, curving of fifth finger/toe, and low limb muscle tone. Child 2 was a 2.5-year-old male with language delay, social impairment, dense hair but no curving of the fifth fingers. Genetic testing revealed that child 1 had loss of heterozygosity for exons 8 to 21 of the ARID1B gene, which was unreported previously. Family verification showed that both of her parents were of the wild type. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG) and American Society of Molecular Pathology (AMP), the variant was rated as pathogenic (PVS1+PS2+PM2-supporting). Child 2 was found to harbor a heterozygous c.4263-6 (IVS17) T>G variant of the ARID1B gene. Transcriptome sequencing confirmed that the variant can affect the normal splicing, resulting in retention of a 5 bp sequence in intron 17. Family verification showed that both of his parents were of the wild type. Based on the guidelines from the ACMG, the variant was rated as pathogenic (PS2+PM2-supporting+PP3+PS3). CONCLUSION: WES and RNA-seq have confirmed the diagnosis of CSS in both children. Discovery of the novel variants has expanded the spectrum of pathogenic mutations underlying CSS, and provided a basis for the genetic counseling.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Micrognatismo , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Variações do Número de Cópias de DNA , Proteínas de Ligação a DNA/genética , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Micrognatismo/genética , Mutação , Fatores de Transcrição/genética
2.
Front Genet ; 14: 1153284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025455

RESUMO

Background: Luscan-Lumish syndrome is characterized by macrocephaly, postnatal overgrowth, intellectual disability (ID), developmental delay (DD), which is caused by heterozygous SETD2 (SET domain containing 2) mutations. The incidence of Luscan-Lumish syndrome is unclear. The study was conducted to provide a novel pathogenic SETD2 variant causing atypical Luscan-Lumish syndrome and review all the published SETD2 mutations and corresponding symptoms, comprehensively understanding the phenotypes and genotypes of SETD2 mutations. Methods: Peripheral blood samples of the proband and his parents were collected for next-generation sequencing including whole-exome sequencing (WES), copy number variation (CNV) detection and mitochondrial DNA sequencing. Identified variant was verified by Sanger sequencing. Conservative analysis and structural analysis were performed to investigate the effect of mutation. Public databases such as PubMed, Clinvar and Human Gene Mutation Database (HGMD) were used to collect all cases with SETD2 mutations. Results: A novel pathogenic SETD2 variant (c.5835_c.5836insAGAA, p. A1946Rfs*2) was identified in a Chinese 3-year-old boy, who had speech and motor delay without overgrowth. Conservative analysis and structural analysis showed that the novel pathogenic variant would loss the conserved domains in the C-terminal region and result in loss of function of SETD2 protein. Frameshift mutations and non-sense mutations account for 68.5% of the total 51 SETD2 point mutations, suggesting that Luscan-Lumish syndrome is likely due to loss of function of SETD2. But we failed to find an association between genotype and phenotype of SETD2 mutations. Conclusion: Our findings expand the genotype-phenotype knowledge of SETD2-associated neurological disorder and provide new evidence for further genetic counselling.

3.
Clin Chim Acta ; 533: 31-39, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35709987

RESUMO

Cobalamin C (cblC) disease and Mowat-Wilson syndrome (MWS) are rare hereditary diseases. To date, there have been no reports of people suffering from these two genetic diseases, or whether there is any correlation between the two diseases. We reported a 2-year-old girl with both cblC disease and MWS. The patient initially manifested as slow weight gain, hypotonia, broad nasal bridge, high forehead, high palate arch, ear crease, patent ductus arteriosus, atrial and ventricular septal defect and bilateral mild ventriculomegaly in the neonatal period. However, as the baby grew older, the typical facial features became more prominent, and overall developmental delays were noted at the subsequent follow-up, with the motor and cognitive development significantly lagging behind that of other children of the same age. At 26 days old, laboratory tests revealed remarkably elevated levels of serum homocysteine, C3/C2 and urine organic acid. Whole-exome sequencing detected compound heterozygous variants in MMACHC, including one previously reported mutation [c.609G > A (p.W203X) and a novel missense mutation[ c.643 T > C (p.Y215H)]. The computer simulations of the protein structure analysis of the novel missense mutation showed the variant p.Y215H replaced a neutral amino acid with a strongly basic lysine, which broken the local structure by changing the carbon chain skeleton and decreasing the interaction with adjacent amino acid. This is expected to damage the utilization of vitamin B12 and influence the synthesis of AdoCbl and MeCbl, contributing to its pathogenicity. Thus, clinical and genetic examinations confirmed the cblC disease. Another heterozygous variant in ZEB2 [NM_014795; loss1(exon:2-10)(all); 127901 bp] was detected by whole-exome sequencing. The heterozygous 3.04 Mb deletion in EB2 [GRCH37]del(2)(q22.2q22.3) (chr2:142237964-145274917) was also confirmed by genome-wide copy number variations (CNVs) scan, which was pathogenic and led to the diagnosis of Mowat-Wilson syndrome. The biochemical indicators associated with cblC disease in the patient were well controlled after treatment with vitamin B12 and betaine. Here, a patient with coexisting cblC disease and MWS caused by different pathogenic genes was reported, which enriched the clinical research on these two rare genetic diseases.


Assuntos
Variações do Número de Cópias de DNA , Vitamina B 12 , Criança , Pré-Escolar , Fácies , Feminino , Doença de Hirschsprung , Homocistinúria , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual , Microcefalia , Mutação , Oxirredutases , Vitamina B 12/uso terapêutico , Deficiência de Vitamina B 12/congênito , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...