Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stress Biol ; 4(1): 9, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300431

RESUMO

The male reproductive system has a standard immune response regulatory mechanism, However, a variety of external stimuli, including viruses, bacteria, heat, and medications can damage the testicles and cause orchitis and epididymitis. It has been shown that various RNA viruses are more likely to infect the testis than DNA viruses, inducing orchitis and impairing testicular function. It was found that local injection of the viral RNA analog poly(I:C) into the testes markedly disrupted the structure of the seminiferous tubules, accompanied by apoptosis and inflammation. Poly(I:C) mainly inhibited the expression of testosterone synthesis-associated proteins, STAR and MGARP, and affected the synthesis and metabolism of amino acids and lipids in the testis. This led to the disruption of the metabolite levels in the testis of mice, thus affecting the normal spermatogenesis process. The present study analyzed the acute inflammatory response of the testis to viral infection using a multi-omics approach. It provides insights into how RNA virus infection impairs testicular function and offers a theoretical basis for future studies on immune homeostasis and responses under stress conditions in male reproduction.

2.
Theriogenology ; 215: 321-333, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128225

RESUMO

The transcription factor promyelocytic leukemia zinc finger (PLZF, also known as ZBTB16) is critical for the self-renewal of spermatogonial stem cells (SSCs). However, the function of PLZF in SSCs is not clear. Here, we found that PLZF acted as an epigenetic regulator of stem cell maintenance and self-renewal of germ cells. The PLZF protein interacts with the ten-eleven translocation 1 (TET1) protein and subsequently acts as a modulator to regulate the expression of self-renewal-related genes. Furthermore, Transcription Factor 7-like 2 (TCF7L2) is promoted by the coordination of PLZF and Tri-methylation of lysine 4 on histone H3 (H3K4me3). In addition, testicular single-cell sequencing indicated that TCF7L2 is commonly expressed in the PLZF cluster. We demonstrated that PLZF directly targets TCF7L2 and alters the landscape of histone methylation in the SSCs nucleus. Meanwhile, the RD domain and Zn finger domain of PLZF synergize with H3K4me3 and directly upregulate TCF7L2 expression at the transcriptional level. Additionally, we identified a new association between PLZF and the histone methyltransferase EZH2 at the genomic level. Our study identified a new association between PLZF and H3K4me3, established the novel PLZF&TET1-H3K4me3-TCF7L2 axis at the genomic level which regulates undifferentiated spermatogonia, and provided a platform for studying germ cell development in male domestic animals.


Assuntos
Fatores de Transcrição Kruppel-Like , Espermatogônias , Masculino , Animais , Espermatogônias/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Testículo/metabolismo , Fatores de Transcrição/metabolismo
3.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 4901-4914, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38147990

RESUMO

With the rapid development of gene editing technology, the study of spermatogonial stem cells (SSCs) holds great significance in understanding spermatogenesis and its regulatory mechanism, developing transgenic animals, gene therapy, infertility treatment and protecting rare species. Biogenesis of lysosome-related organelles complex 1 subunit 1 (BLOC1S1) is believed to have anti-brucella potential. Exploring the impack of BLOC1S1 on goat SSCs not only helps investigate the ability of BLOC1S1 to promote SSCs proliferation, but also provides a cytological basis for disease-resistant breeding research. In this study, a BLOC1S1 overexpression vector was constructed by homologous recombination. The BLOC1S1 overexpression cell line of goat spermatogonial stem cells was successfully constructed by lentivirus packaging, transfection and puromycin screening. The overexpression efficiency of BLOC1S1 was found to be 18 times higher using real time quantitative PCR (RT-qPCR). Furthermore, the results from cell growth curve analysis, flow cytometry for cell cycle detection, and 5-ethynyl-2'-deoxyuridine (EdU) staining showed that BLOC1S1 significantly increased the proliferation activity of goat SSCs. The results of RT-qPCR, immunofluorescence staining and Western blotting analyses revealed up-regulation of proliferation-related genes (PCNA, CDK2, CCND1), and EIF2S3Y, a key gene regulating the proliferation of spermatogonial stem cells. These findings strongly suggest that the proliferative ability of goat SSCs can be enhanced through the EIF2S3Y/ERK pathway. In summary, this study successfully created a goat spermatogonial stem cell BLOC1S1 overexpression cell line, which exhibited improved proliferation ability. This research laid the groundwork for exploring the regulatory role of BLOC1S1 in goat spermatogonia and provided a cell platform for further study into the biological function of BLOC1S1. These findings also establish a foundation for breeding BLOC1S1 overexpressing goats.


Assuntos
Cabras , Células-Tronco , Animais , Masculino , Espermatogônias/metabolismo , Proliferação de Células , Citometria de Fluxo , Testículo/metabolismo
4.
FASEB J ; 37(12): e23306, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37934018

RESUMO

Spermatogonial stem cells (SSCs) play a crucial role in mammalian spermatogenesis and maintain the stable inheritance of the germline in livestock. However, stress and bacterial or viral infections can disrupt immune homeostasis of the testes, thereby leading to spermatogenesis destruction and infertility, which severely affects the health and productivity of mammals. This study aimed to explore the effect of ubiquitin C-terminal hydrolase L1 (UCHL1) knockdown (KD) in goat SSCs and mouse testes and investigate the potential anti-inflammatory function of UCHL1 in a poly(I:C)-induced inflammation model to maintain microenvironmental homeostasis. In vitro, the downregulation of UCHL1 (UCHL1 KD) in goat SSCs increased the expression levels of apoptosis and inflammatory factors and inhibited the self-renewal and proliferation of SSCs. In vivo, the structure of seminiferous tubules and spermatogenic cells was disrupted after UCHL1 KD, and the expression levels of apoptosis- and inflammation-related proteins were significantly upregulated. Furthermore, UCHL1 inhibited the TLR3/TBK1/IRF3 pathway to resist poly(I:C)-induced inflammation in SSCs by antagonizing HSPA8 and thus maintaining SSC autoimmune homeostasis. Most importantly, the results of this study showed that UCHL1 maintained immune homeostasis of SSCs and spermatogenesis. UCHL1 KD not only inhibited the self-renewal and proliferation of goat SSCs and spermatogenesis but was also involved in the inflammatory response of goat SSCs. Additionally, UCHL1 has an antiviral function in SSCs by antagonizing HSPA8, which provides an important basis for exploring the specific mechanisms of UCHL1 in goat spermatogenesis.


Assuntos
Cabras , Espermatogônias , Animais , Masculino , Camundongos , Homeostase , Inflamação/metabolismo , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Células-Tronco , Testículo/metabolismo
5.
Theriogenology ; 211: 65-75, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586163

RESUMO

Eif2s3y (eukaryotic translation initiation factor 2, subunit 3, structural gene Y-linked, Eif2s3y) is an essential gene for spermatogenesis. Early studies have shown that Eif2s3y can promote the proliferation of spermatogonial stem cells (SSCs) and can replace the Y chromosome together with sex-determining region Y (Sry) to transform SSCs into round spermatozoa. We injected lentiviral particles into the seminiferous tubules of mouse testes by sterile surgery surgically to establish overexpressing Eif2s3y testes. And then the mice were intraperitoneally injected with LPS to established the model of testis inflammation. Through RNA sequencing, qRT-PCR analysis, Western blot, co-culture etc., we found that Eif2s3y alleviated LPS-induced damage in mouse testes and maintained spermatogenesis. In testes with Eif2s3y overexpression, the seminiferous tubules were more regularly organized after exposure to LPS compared with the control. Eif2s3y performs its function by negatively regulating Adamts5 (a disintegrin and metalloproteinase containing a thrombospondin-1 motif), an extracellular matrix-degrading enzyme. ADAMTS5 shows a disruptive effect when the testis is exposed to LPS. Overexpression of Eif2s3y inhibited the TLR4/NFκB signaling pathway in the testis in response to LPS. Generally, our research shows that Eif2s3y protects the testis from LPS and maintains spermatogenesis by negatively regulating Adamts5.


Assuntos
Lipopolissacarídeos , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , Lipopolissacarídeos/toxicidade , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Túbulos Seminíferos , Espermatogônias , Proteína ADAMTS5 , Fatores de Transcrição/metabolismo
6.
Zool Res ; 44(3): 505-521, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37070575

RESUMO

Bacterial or viral infections, such as Brucella, mumps virus, herpes simplex virus, and Zika virus, destroy immune homeostasis of the testes, leading to spermatogenesis disorder and infertility. Of note, recent research shows that SARS-CoV-2 can infect male gonads and destroy Sertoli and Leydig cells, leading to male reproductive dysfunction. Due to the many side effects associated with antibiotic therapy, finding alternative treatments for inflammatory injury remains critical. Here, we found that Dmrt1 plays an important role in regulating testicular immune homeostasis. Knockdown of Dmrt1 in male mice inhibited spermatogenesis with a broad inflammatory response in seminiferous tubules and led to the loss of spermatogenic epithelial cells. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that Dmrt1 positively regulated the expression of Spry1, an inhibitory protein of the receptor tyrosine kinase (RTK) signaling pathway. Furthermore, immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP) analysis indicated that SPRY1 binds to nuclear factor kappa B1 (NF-κB1) to prevent nuclear translocation of p65, inhibit activation of NF-κB signaling, prevent excessive inflammatory reaction in the testis, and protect the integrity of the blood-testis barrier. In view of this newly identified Dmrt1- Spry1-NF-κB axis mechanism in the regulation of testicular immune homeostasis, our study opens new avenues for the prevention and treatment of male reproductive diseases in humans and livestock.


Assuntos
Fertilidade , Homeostase , NF-kappa B , Testículo , NF-kappa B/metabolismo , Fertilidade/genética , Fertilidade/imunologia , Humanos , Masculino , Testículo/imunologia , Testículo/metabolismo , Homeostase/imunologia , Animais , Camundongos , Células HEK293 , Espermatogênese , Inflamação , Regiões Promotoras Genéticas/genética , Ativação Transcricional , Técnicas de Silenciamento de Genes
7.
Opt Express ; 31(1): 492-501, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36606983

RESUMO

Exceptional points (EPs), the critical phase transition points of non-Hermitian parity-time (PT) systems, exhibit many novel physical properties and associated applications, such as ultra-sensitive detection of perturbations. Here, a bilayer metasurface with two orthogonally oriented split-ring resonators (SRRs) is proposed and a phase transition of the eigenpolarization states is introduced via changing the conductivity of vanadium dioxide (VO2) patch integrated into the gap of one SRR. The metasurface possesses a passive PT symmetry and an EP in polarization space is observed at a certain conductivity of the VO2. Two sensing schemes with the metasurface are proposed to achieve high-sensitivity sensing of temperature and refractive index in the terahertz (THz) range. The metasurface is promising for applications in THz biosensing and polarization manipulation.

8.
Theriogenology ; 191: 132-140, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981412

RESUMO

XBP1 is a transcription factor that plays a central role in controlling cellular responses to endoplasmic reticulum stress (ERS). Under stress conditions, the transcriptionally active form of XBP1 is generated by splicing of XBP1 mRNA by the ER-resident protein inositol-requiring enzyme-1α (IRE1α). This study aimed to investigate the role of XBP1 in male reproductive disorders. XBP1s-overexpressing goat spermatogonial stem cells (gSSCs) showed higher proliferative ability in vitro and in vivo. These cells also showed higher antioxidant capacity. In comparison, XBP1 knockdown significantly suppressed proliferation. Further analysis showed that XBP1 could stimulate the secretion of IL-6 from macrophages. Overall, the results indicate that XBP1s functions to enhance the proliferation ability and antioxidant capacity of gSSCs, potentially through a mechanism involving the regulation of gSSCs by macrophages.


Assuntos
Células-Tronco Germinativas Adultas , Lipopolissacarídeos , Células-Tronco Germinativas Adultas/metabolismo , Animais , Antioxidantes , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Proteínas Serina-Treonina Quinases , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...