Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38006153

RESUMO

With the miniaturization of current electronic products, ceramic/polymer composites with excellent thermal conductivity have become of increasing interest. Traditionally, higher filler fractions are required to obtain a high thermal conductivity, but this leads to a decrease in the mechanical properties of the composites and increases the cost. In this study, silicon nitride nanowires (Si3N4NWs) with high aspect ratios were successfully prepared by a modified carbothermal reduction method, which was further combined with AlN particles to prepare the epoxy-based composites. The results showed that the Si3N4NWs were beneficial for constructing a continuous thermal conductive pathway as a connecting bridge. On this basis, an aligned three-dimensional skeleton was constructed by the ice template method, which further favored improving the thermal conductivity of the composites. When the mass fraction of Si3N4NWs added was 1.5 wt% and the mass fraction of AlN was 65 wt%, the composites prepared by ice templates reached a thermal conductivity of 1.64 W·m-1·K-1, which was ~ 720% of the thermal conductivity of the pure EP (0.2 W·m-1·K-1). The enhancement effect of Si3N4NWs and directional filler skeletons on the composite thermal conductivity were further demonstrated through the actual heat transfer process and finite element simulations. Furthermore, the thermal stability and mechanical properties of the composites were also improved by the introduction of Si3N4NWs, suggesting that prepared composites exhibit broad prospects in the field of thermal management.

2.
ACS Appl Mater Interfaces ; 15(27): 32885-32894, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37392172

RESUMO

As the rapid development of advanced foldable electronic devices, flexible and insulating composite films with ultra-high in-plane thermal conductivity have received increasing attention as thermal management materials. Silicon nitride nanowires (Si3N4NWs) have been considered as promising fillers for preparing anisotropic thermally conductive composite films due to their extremely high thermal conductivity, low dielectric properties, and excellent mechanical properties. However, an efficient approach to synthesize Si3N4NWs in a large scale still need to be explored. In this work, large quantities of Si3N4NWs were successfully prepared using a modified CRN method, presenting the advantages of high aspect ratio, high purity, and easy collection. On the basis, the super-flexible PVA/Si3N4NWs composite films were further prepared with the assistance of vacuum filtration method. Due to the highly oriented Si3N4NWs interconnected to form a complete phonon transport network in the horizontal direction, the composite films exhibited a high in-plane thermal conductivity of 15.4 W·m-1·K-1. The enhancement effect of Si3N4NWs on the composite thermal conductivity was further demonstrated by the actual heat transfer process and finite element simulations. More significantly, the Si3N4NWs enabled the composite film presenting good thermal stability, high electrical insulation, and excellent mechanical strength, which was beneficial for thermal management applications in modern electronic devices.

3.
ACS Appl Mater Interfaces ; 15(1): 2124-2133, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36576869

RESUMO

With the miniaturization of current electronic products, ceramic/polymer composites with excellent thermal conductivity have attracted increasing attention. For regular ceramic particles as fillers, it is necessary to achieve the highest filling fraction to obtain high thermal conductivity, yet leading to higher production cost and reduced mechanical properties. In this paper, AlN whiskers with a high aspect ratio were successfully prepared using a modified direct nitriding method, which was further paired with AlN particles as fillers to prepare the AlN/epoxy composites. It is indicated that AlN whiskers could form bridging links between AlN particles, which favored the establishment of thermal pathways inside the polymer matrix. On this basis, we constructed the 3D AlN skeletons as a thermal conductivity pathway by the freeze-casting method, which could further enhance the thermal conductivity of the composites. The synergistic enhancement effect of 1D AlN whiskers and directional filler skeletons on the composite thermal conductivity was further demonstrated by the actual heat transfer process and finite element simulations. More significantly, the experimental results showed that the addition of one-dimensional fillers could also effectively improve the thermal stability and mechanical properties of the composites, which was beneficial for preparing high-performance TIMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...