Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(8): 5678-5692, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38359327

RESUMO

The rapid and controlled synthesis of high-molecular-weight (HMW) polysarcosine (pSar), a potential polyethylene glycol (PEG) alternative, via the ring-opening polymerization (ROP) of N-carboxyanhydride (NCA) is rare and challenging. Here, we report the well-controlled ROP of sarcosine NCA (Sar-NCA) that is catalyzed by various carboxylic acids, which accelerate the polymerization rate up to 50 times, and enables the robust synthesis of pSar with an unprecedented ultrahigh molecular weight (UHMW) up to 586 kDa (DP ∼ 8200) and exceptionally narrow dispersity (D̵) below 1.05. Mechanistic experiments and density functional theory calculations together elucidate the role of carboxylic acid as a bifunctional catalyst that significantly facilitates proton transfer processes and avoids charge separation and suggest the ring opening of NCA, rather than decarboxylation, as the rate-determining step. UHMW pSar demonstrates improved thermal and mechanical properties over the low-molecular-weight counterparts. This work provides a simple yet highly efficient approach to UHMW pSar and generates a new fundamental understanding useful not only for the ROP of Sar-NCA but also for other NCAs.

2.
Nat Commun ; 14(1): 5348, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660126

RESUMO

The manipulation of internal interactions at the molecular level within biological fibers is of particular importance but challenging, severely limiting their tunability in macroscopic performances and applications. It thus becomes imperative to explore new approaches to enhance biological fibers' stability and environmental tolerance and to impart them with diverse functionalities, such as mechanical recoverability and stimulus-triggered responses. Herein, we develop a dynamic imine fiber chemistry (DIFC) approach to engineer molecular interactions to fabricate strong and tough protein fibers with recoverability and actuating behaviors. The resulting DIF fibers exhibit extraordinary mechanical performances, outperforming many recombinant silks and synthetic polymer fibers. Remarkably, impaired DIF fibers caused by fatigue or strong acid treatment are quickly recovered in water directed by the DIFC strategy. Reproducible mechanical performance is thus observed. The DIF fibers also exhibit exotic mechanical stability at extreme temperatures (e.g., -196 °C and 150 °C). When triggered by humidity, the DIFC endows the protein fibers with diverse actuation behaviors, such as self-folding, self-stretching, and self-contracting. Therefore, the established DIFC represents an alternative strategy to strengthen biological fibers and may pave the way for their high-tech applications.


Assuntos
Engenharia Química , Iminas , Iminas/química , Seda
3.
Adv Sci (Weinh) ; 9(7): e2105108, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35018745

RESUMO

The development of new storage media to meet the demands for diverse information storage scenarios is a great challenge. Here, a series of lanthanide-based luminescent organogels with ultrastrong mechanical performance and outstanding plasticity are developed for patterned information storage and encryption applications. The organogels possessing outstanding mechanical properties and tunable luminescent colors are prepared by electrostatic and coordinative interactions between natural DNA, synthetic ligands, and rare earth (RE) ions. The organogel-REs can be stretched by 180 times and show an ultrastrong breaking strength of 80 MPa. A series of applications with both information storage and encryption, such as self-information pattern, quick response (QR) code, and barcode, are successfully demonstrated by the organogel-REs. The developed information storage systems have various advantages of good processability, high stretchability, excellent stability, and versatile design of information patterns. Therefore, the organogel-RE-based information storage systems are suitable for applications under different scenarios, such as flexible devices under repeating rude operations. The advancements will enable the design and development of luminescent organogel-REs as information storage and encryption media for various scenarios.

4.
Dalton Trans ; 50(6): 2014-2017, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33544105

RESUMO

pH is a critical parameter that has found unique application in magnetic resonance imaging (MRI) mapping acidity in tissues. This study reports a series of Dy-based MR probes that show innovative T2ex features, governed by proton catalyzed events. With an increase of pH from 5.5 to 8.0, the r2ex relaxivity increased dramatically, while the r1 relaxivity remained unchanged. The resulting r2ex/r1 allowed for concentration-independent and direct mapping of physiologically relevant pH ranges.


Assuntos
Amidas/química , Meios de Contraste/química , Disprósio/química , Imageamento por Ressonância Magnética/métodos , Compostos Organometálicos/química , Concentração de Íons de Hidrogênio
5.
Angew Chem Int Ed Engl ; 59(41): 18213-18217, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32634255

RESUMO

The self-assembly of inorganic nanoparticles into well-ordered structures in the absence of solvents is generally hindered by van der Waals forces, leading to random aggregates between them. To address the problem, we functionalized rigid rare-earth (RE) nanoparticles with a layer of flexible polymers by electrostatic complexation. Consequently, an ordered and solvent-free liquid crystal (LC) state of RE nanoparticles was realized. The RE nanomaterials including nanospheres, nanorods, nanodiscs, microprisms, and nanowires all show a typical nematic LC phase with one-dimensional orientational order, while their microstructures strongly depend on the particles' shape and size. Interestingly, the solvent-free thermotropic LCs possess an extremely wide temperature range from -40 °C to 200 °C. The intrinsic ordering and fluidity endow anisotropic luminescence properties in the system of shearing-aligned RE LCs, offering potential applications in anisotropic optical micro-devices.

6.
Adv Mater ; 32(17): e2000964, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32162422

RESUMO

Fluorescent proteins are investigated extensively as markers for the imaging of cells and tissues that are treated by gene transfection. However, limited transfection efficiency and lack of targeting restrict the clinical application of this method rooted in the challenging development of robust fluorescent proteins for in vivo bioimaging. To address this, a new type of near-infrared (NIR) fluorescent protein assemblies manufactured by genetic engineering is presented. Due to the formation of well-defined nanoparticles and spectral operation within the phototherapeutic window, the NIR protein aggregates allow stable and specific tumor imaging via simple exogenous injection. Importantly, in vivo tumor metastases are tracked and this overcomes the limitations of in vivo imaging that can only be implemented relying on the gene transfection of fluorescent proteins. Concomitantly, the efficient loading of hydrophobic drugs into the protein nanoparticles is demonstrated facilitating the therapy of tumors in a mouse model. It is believed that these theranostic NIR fluorescent protein assemblies, hence, show great potential for the in vivo detection and therapy of cancer.


Assuntos
Antineoplásicos/química , Engenharia Genética , Proteínas Luminescentes/química , Animais , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/secundário , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Peptídeos/química , Polietilenoglicóis/química , Espectroscopia de Luz Próxima ao Infravermelho , Tioestreptona/química , Tioestreptona/metabolismo , Tioestreptona/uso terapêutico , Transplante Heterólogo
7.
Angew Chem Int Ed Engl ; 58(50): 18286-18289, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31589797

RESUMO

Chiral α-hydroxyl acids are of great importance in chemical synthesis. Current methods for recognizing their chirality by 1 H NMR are limited by their small chemical shift differences and intrinsic solubility problem in organic solvents. Herein, we developed three YbDO3A(ala)3 derivatives to recognize four different commercially available chiral α-hydroxyl acids in aqueous solution through 1 H NMR and chemical exchange saturation transfer (CEST) spectroscopy. The shift difference between chiral α-hydroxyl acid observed by proton and CEST NMR ranged from 15-40 and 20-40 ppm, respectively. Our work demonstrates for first time, that even one chiral center on the side-arm chain of cyclen could set the stage for rotation of the other two non-chiral side chains into a preferred position. This is ascribed to the lower energy state of the structure. The results show that chiral YbDO3A-like complexes can be used to discriminate chiral α-hydroxyl acids with a distinct signal difference.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...