Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(3)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131517

RESUMO

The damping properties of polybutyl methacrylate (PBMA)/aromatic petroleum resin (C9) composite were investigated in this work. In particular, a trace of styrene (St) was introduced to copolymerize with PBMA to improve the compatibility between C9 and matrix. The structure of the copolymer, P(BMA-co-St), was characterized by FTIR and 1HNMR. The P(BMA-co-St)/C9 composites were tested by differencial scanning calorimetry (DSC), scanning electron microscopy (SEM) and dynamical mechanical analysis (DMA). DSC curves of all P(BMA-co-1wt%St)/C9 composites expressed only one glass transition temperature (Tg). SEM images showed that C9 had good compatibility with the matrix after St was introduced. DMA curves indicated that the addition of C9 had a positive effect on the damping properties of PBMA. The loss tangent (tanδ) peak moved to a higher temperature with the increment content of C9, and the effective damping temperature range increased significantly. The influence of aromatic resin C9 and aliphatic resin (C5) on PBMA damping performance was compared. It was further shown that C9 with benzene ring effectively improved the damping performance of PBMA.

2.
Polymers (Basel) ; 12(2)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102238

RESUMO

Poly (butyl methacrylate) (PBMA) was blended with a series of phenolic resins (PR) to study the effect of PR molecular weight on dynamic mechanical properties of PBMA/PR composites. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) found a similar variation of glass transition temperature (Tg). The maximum loss peak (tanδmax) improved in all PBMA/PR blends compared with the pure PBMA. However, tanδmax reduced as the molecular weight increased. This is because PR with higher molecular weight is more rigid in the glass transition zone of blends. The hydrogen bonding between PBMA and PR was characterized by Fourier transform infrared spectroscopy (FTIR). Lower molecular weight PR formed more hydrogen bonds with the matrix and it had weaker temperature dependence. Combined with the results from DMA, we studied how molecular weight affected hydrogen bonding and thus further affected tanδmax.

3.
Materials (Basel) ; 13(5)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106395

RESUMO

Graphene oxide (GO) was modified by p-phenylenediamine (PPD), aiming at improving the wet-skid resistance and reduce the rolling loss of solution polymerized styrene-butadiene rubber (SSBR). PPD with amino groups enabled GO to obtain anti-aging function. The structure of modified GO (PPD-GO) was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Raman spectroscopy. Mechanical tests showed that the mechanical properties of SSBR before and after aging were improved by adding PPD-GO. The results of thermogravimetric-differential scanning calorimeter synchronization analysis (TGA-DSC) indicated that SSBR/PPD-GO obtained good thermo-oxidative stability. The dynamic mechanical analysis (DMA) of SSBR composites showed that the mechanical loss factor (tanδ) peak moved to high temperature with the content of PPD-GO. The tanδ values of SSBR composites showed that it had a good effect on improving the wet-skid resistance and reducing the rolling loss of SSBR by adjusting the content of PPD-GO. In particular, with the addition of 4 phr GO, SSBR was effectively improved in mechanical properties, aging resistance, wet-skid resistance and low rolling loss.

4.
Polymers (Basel) ; 11(10)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658636

RESUMO

Nitrogen-doped graphene oxide (GO), namely, NG, was prepared by o-phenylenediamine (OPD) grafting onto GO. The structure and morphology of NG were characterized by FITR, XRD, SEM, EDS, Raman spectroscopy, and TGA. OPD was linked to the GO surface by covalent bonds, and the absorption peak of the C=N bond in the phenazine structure was identified in the FITR spectra. The aging resistance properties of nitrile-butadiene rubber (NBR)-NG composites was investigated by mechanical testing, before and after aging. The resistance of the NBR/NG composites with the addition of 3 phr NG fillers was the highest. The aging mechanism was investigated by TGA-DSC, DMA, equilibrium swelling testing, and ATR-FTIR. The results showed that NG could effectively inhibit chain cross-linking in NBR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...