Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501976

RESUMO

The increase in security threats and a huge demand for smart transportation applications for vehicle identification and tracking with multiple non-overlapping cameras have gained a lot of attention. Moreover, extracting meaningful and semantic vehicle information has become an adventurous task, with frameworks deployed on different domains to scan features independently. Furthermore, approach identification and tracking processes have largely relied on one or two vehicle characteristics. They have managed to achieve a high detection quality rate and accuracy using Inception ResNet and pre-trained models but have had limitations on handling moving vehicle classes and were not suitable for real-time tracking. Additionally, the complexity and diverse characteristics of vehicles made the algorithms impossible to efficiently distinguish and match vehicle tracklets across non-overlapping cameras. Therefore, to disambiguate these features, we propose to implement a Ternion stream deep convolutional neural network (TSDCNN) over non-overlapping cameras and combine all key vehicle features such as shape, license plate number, and optical character recognition (OCR). Then jointly investigate the strategic analysis of visual vehicle information to find and identify vehicles in multiple non-overlapping views of algorithms. As a result, the proposed algorithm improved the recognition quality rate and recorded a remarkable overall performance, outperforming the current online state-of-the-art paradigm by 0.28% and 1.70%, respectively, on vehicle rear view (VRV) and Veri776 datasets.


Assuntos
Algoritmos , Redes Neurais de Computação , Semântica
2.
Sensors (Basel) ; 22(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35336294

RESUMO

Multi-object tracking in video surveillance is subjected to illumination variation, blurring, motion, and similarity variations during the identification process in real-world practice. The previously proposed applications have difficulties in learning the appearances and differentiating the objects from sundry detections. They mostly rely heavily on local features and tend to lose vital global structured features such as contour features. This contributes to their inability to accurately detect, classify or distinguish the fooling images. In this paper, we propose a paradigm aimed at eliminating these tracking difficulties by enhancing the detection quality rate through the combination of a convolutional neural network (CNN) and a histogram of oriented gradient (HOG) descriptor. We trained the algorithm with an input of 120 × 32 images size and cleaned and converted them into binary for reducing the numbers of false positives. In testing, we eliminated the background on frames size and applied morphological operations and Laplacian of Gaussian model (LOG) mixture after blobs. The images further underwent feature extraction and computation with the HOG descriptor to simplify the structural information of the objects in the captured video images. We stored the appearance features in an array and passed them into the network (CNN) for further processing. We have applied and evaluated our algorithm for real-time multiple object tracking on various city streets using EPFL multi-camera pedestrian datasets. The experimental results illustrate that our proposed technique improves the detection rate and data associations. Our algorithm outperformed the online state-of-the-art approach by recording the highest in precisions and specificity rates.


Assuntos
Redes Neurais de Computação , Pedestres , Algoritmos , Humanos , Movimento (Física) , Distribuição Normal
3.
EURASIP J Adv Signal Process ; 2022(1): 10, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35194421

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) is spreading rapidly around the world, resulting in a global pandemic. Imaging techniques such as computed tomography (CT) play an essential role in the diagnosis and treatment of the disease since lung infection or pneumonia is a common complication. However, training a deep network to learn how to diagnose COVID-19 rapidly and accurately in CT images and segment the infected regions like a radiologist is challenging. Since the infectious area is difficult to distinguish manually annotation, the segmentation results are time-consuming. To tackle these problems, we propose an efficient method based on a deep adversarial network to segment the infection regions automatically. Then, the predicted segment results can assist the diagnostic network in identifying the COVID-19 samples from the CT images. On the other hand, a radiologist-like segmentation network provides detailed information of the infectious regions by separating areas of ground-glass, consolidation, and pleural effusion, respectively. Our method can accurately predict the COVID-19 infectious probability and provide lesion regions in CT images with limited training data. Additionally, we have established a public dataset for multitask learning. Extensive experiments on diagnosis and segmentation show superior performance over state-of-the-art methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...