Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(19): e2307409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477567

RESUMO

Uncontrollable massive bleeding caused by trauma will cause the patient to lose a large amount of blood and drop body temperature quickly, resulting in hemorrhagic shock. This study aims to develop a hemostatic product for hemorrhage management. In this study, waste pomelo peel as raw material is chosen. It underwent processes of carbonization, purification, and freeze-drying. The obtained carbonized pomelo peel (CPP) is hydrophilic and exhibits a porous structure (nearly 80% porosity). The water/blood absorption ratio is significantly faster than the commercial Gelfoam and has a similar water/blood absorption capacity. In addition, the CPP showed a water-triggered shape-recoverable ability. Moreover, the CPP shows ideal cytocompatibility and blood compatibility in vitro and favorable tissue compatibility after long terms of subcutaneous implantation. Furthermore, CPP can absorb red blood cells and fibrin. It also can absorb platelets and activate platelets, and it is capable of achieving rapid hemostasis on the rat tail amputation and hepatectomized hemorrhage model. In addition, the CPP not only can quickly stop bleeding in the rat liver-perforation and rabbit heart uncontrolled hemorrhage models, but also promotes rat liver and rabbit heart tissue regeneration in situ. These results suggest the CPP has shown great potential for managing uncontrolled hemorrhage.


Assuntos
Celulose , Modelos Animais de Doenças , Hemorragia , Animais , Coelhos , Ratos , Celulose/química , Citrus/química , Hemostáticos/farmacologia , Masculino , Hemostasia/efeitos dos fármacos , Ratos Sprague-Dawley , Géis , Ferimentos e Lesões/complicações
2.
Sci Adv ; 10(6): eadk6722, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324693

RESUMO

Reconstructing extensive cranial defects represents a persistent clinical challenge. Here, we reported a hybrid three-dimensional (3D) printed scaffold with modification of QK peptide and KP peptide for effectively promoting endogenous cranial bone regeneration. The hybrid 3D printed scaffold consists of vertically aligned cryogel fibers that guide and promote cell penetration into the defect area in the early stages of bone repair. Then, the conjugated QK peptide and KP peptide further regulate the function of the recruited cells to promote vascularization and osteogenic differentiation in the defect area. The regenerated bone volume and surface coverage of the dual peptide-modified hybrid scaffold were significantly higher than the positive control group. In addition, the dual peptide-modified hybrid scaffold demonstrated sustained enhancement of bone regeneration and avoidance of bone resorption compared to the collagen sponge group. We expect that the design of dual peptide-modified hybrid scaffold will provide a promising strategy for bone regeneration.


Assuntos
Osteogênese , Alicerces Teciduais , Criogéis , Regeneração Óssea/fisiologia , Peptídeos , Impressão Tridimensional
3.
Adv Mater ; 36(16): e2307328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38288789

RESUMO

Chronic wounds resulting from diabetes, pressure, radiation therapy, and other factors continue to pose significant challenges in wound healing. To address this, this study introduces a novel hybrid fibroin fibrous scaffold (FFS) comprising randomly arranged fibroin fibers and vertically aligned cryogel fibers (CFs). The fibroin scaffold is efficiently degummed at room temperature and simultaneously formed a porous structure. The aligned CFs are produced via directional freeze-drying, achieved by controlling solution concentration and freezing polymerization temperature. The incorporation of aligned CFs into the expanded fibroin fiber scaffold leads to enhanced cell infiltration both in vitro and in vivo, further elevating the hybrid scaffold's tissue compatibility. The anti-inflammatory peptide 1 (AP-1) is also conjugated to the hybrid fibrous scaffold, effectively transforming the inflammatory status of chronic wounds from pro-inflammatory to pro-reparative. Consequently, the FFS-AP1+CF group demonstrates superior granulation tissue formation, angiogenesis, collagen deposition, and re-epithelialization during the proliferative phase compared to the commercial product PELNAC. Moreover, the FFS-AP1+CF group displays epidermis thickness, number of regenerated hair follicles, and collagen density closer to normal skin tissue. These findings highlight the potential of random fibroin fibers/aligned CFs hybrid fibrous scaffold as a promising approach for skin tissue filling and tissue regeneration.


Assuntos
Fibroínas , Fibroínas/química , Criogéis , Cicatrização , Colágeno , Alicerces Teciduais/química , Anti-Inflamatórios , Seda
4.
Small ; : e2309868, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38259052

RESUMO

Critical-sized segmental long bone defects represent a challenging clinical dilemma in the management of battlefield and trauma-related injuries. The residual bone marrow cavity of damaged long bones contains many bone marrow mesenchymal stem cells (BMSCs), which provide a substantial source of cells for bone repair. Thus, a three-dimensional (3D) vertically aligned nanofiber scaffold (VAS) is developed with long channels and large pore size. The pore of VAS toward the bone marrow cavity after transplantation, enables the scaffolds to recruit BMSCs from the bone marrow cavity to the defect area. In vivo, it is found that VAS can significantly shorten gap distance and promote new bone formation compared to the control and collagen groups after 4 and 8 weeks of implantation. The single-cell sequencing results discovered that the 3D nanotopography of VAS can promote BMSCs differentiation to chondrocytes and osteoblasts, and up-regulate related gene expression, resulting in enhancing the activities of bone regeneration, endochondral ossification, bone trabecula formation, bone mineralization, maturation, and remodeling. The Alcian blue and bone morphogenetic protein 2 (BMP-2) immunohistochemical staining verified significant cartilage formation and bone formation in the VAS group, corresponding to the single-cell sequencing results. The study can inspire the design of next-generation scaffolds for effective long-bone regeneration is expected by the authors.

5.
Neurosurgery ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991353

RESUMO

BACKGROUND AND OBJECTIVES: Severe rigid spinal scoliosis (SRSS) leads to severe restrictive ventilation dysfunction. Currently, the reports about the influence of preoperative halo-pelvic traction (HPT) combined with correction surgery on pulmonary function in patients with SRSS were relatively few. This study aims to investigate (1) the influence of preoperative HPT on lung volume and pulmonary function, (2) the further influence of the following correction surgery on lung volume and pulmonary function, and (3) the relationship among deformity correction, pulmonary function test outcomes, and computed tomography-based lung volume. METHODS: A total of 135 patients with SRSS who underwent preoperative HPT and followed low-grade osteotomy correction surgery were reviewed. Spinal parameters, including proximal thoracic curve, main thoracic curve (MTC), lumbar curve, coronal balance, thoracic kyphosis, lumbar lordosis, sagittal vertical axis, pulmonary function test outcomes (forced vital capacity [FVC], the percentage of predicted forced vital capacity [FVC%], forced expiratory volume in 1 second [FEV1], total lung capacity [TLC]), and lung volume (Vin), were analyzed before, after HPT and at the final follow-up, respectively. RESULTS: The mean FVC, FVC%, FEV1, and TLC increased from 1.67 L, 51.13%, 1.47 L, and 2.37 L to 1.95 L, 64.35%, 1.75 L, and 2.78 L, respectively, after HPT and further improved to 2.22 L, 72.14%, 1.95 L, and 3.15 L, respectively, at the final follow-up. The mean Vin increased from 1.98 L to 2.42 L after traction and further increased to 2.76 L at the final follow-up. The variation of MTC was correlated with the improvement of FVC (r = 0.429, P = .026), FVC% (r = 0.401, P = .038), FEV1 (r = 0.340, P = .043), and TLC (r = 0.421, P = .029) and the variation of Vin (r = 0.425, P = .015) before HPT and after surgery. CONCLUSION: Preoperative HPT can improve preoperative pulmonary function and enhance the preoperative lung volume. There were significant correlations among the variations of MTC, pulmonary function indexes, and lung volume before HPT and after surgery in patients with SRSS.

6.
Biomaterials ; 302: 122347, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37827053

RESUMO

Biofilm-infected acute skin wounds are still one of the significant challenges that need to be solved urgently in wound healing. Herein, we reported a magnesium/gallic acid bio-MOFs laden carbonized mushroom aerogel (QMOFs-PCMA) combined with photothermal therapy for eradicating biofilms in skin wounds. The design of bioMOFs is mainly responsible for regulating immunity. In vitro, it exhibited ROS clearance and antioxidant ability. In vivo, it could regulate local immune responses from pro-inflammatory status to pro-regenerative status, resulting in decreased inflammatory cytokines expression and increased anti-inflammatory cytokines expression. The carbonized mushroom aerogel is mainly responsible for photothermal therapy (PTT), and the polydopamine and bioMOFs could enhance the photothermal conversion efficiency and stability of carbonized aerogels. The carbonized aerogel in combination with PTT could eradicate S. aureus biofilm in both in vitro and in vivo studies and clear E. coli biofilms in vitro studies. The biofilm clearance and improved inflammatory responses laid a good foundation for wound healing, resulting in the granulation tissue formation, re-epithelialization, and angiogenesis significantly enhanced in the QMOFs-PCMA + NIR group. Our results indicate that the QMOFs-PCMA combined with photothermal therapy may provide a promising treatment for biofilm-infected skin wounds.


Assuntos
Agaricales , Staphylococcus aureus , Magnésio , Ácido Gálico , Escherichia coli , Cicatrização/fisiologia , Biofilmes , Citocinas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
7.
Eur Spine J ; 32(11): 4054-4062, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37674057

RESUMO

PURPOSE: The aim of this study was to assess the clinical efficacy of balanced halo-pelvic traction (HPT) and evaluate its contribution to the correction surgery in treating adult severe rigid spinal deformity. METHODS: One hundred and eight adult patients with severe rigid spinal deformity who underwent preoperative HPT and correction surgery were reviewed. The main coronal curve, segmental kyphotic angle, coronal balance (CB), sagittal balance (SVA), and the length of spine were measured before HPT, after HPT, post-operatively, and at final follow-up. The HPT contribution rates to deformity correction were calculated. RESULTS: The pre-HPT main coronal curve was 103.4 ± 10.6°, improved to 61.0 ± 13.4° after traction and further improved to 44.2 ± 10.2° after surgical correction, and maintained at 50.3 ± 9.9° at final follow-up. CB started at 4.2 ± 4.8 cm, improved to 2.1 ± 2.5 cm after HPT, 0.8 ± 1.2 cm after operation, and 0.7 ± 0.9 cm at final follow-up. The pre-HPT sagittal segmental kyphotic angle was 67.3 ± 17.7°, was then improved to 42.2 ± 27.5° after traction and further improved to 34.9 ± 10.2° after surgery, and maintained at 35.4 ± 10.4° at final follow-up. The length of spine improved from 35.9 ± 5.9 to 42.6 ± 6.0 cm via HPT, reached up to 45.0 ± 6.0 cm after operation, and maintained at 44.3 ± 5.2 cm at final follow-up. CONCLUSION: HPT is effective for the treatment of severe rigid spinal deformity. Balanced HPT can dramatically improve coronal and sagittal deformity as well as spinal length before corrective surgery.


Assuntos
Cifose , Escoliose , Fusão Vertebral , Adulto , Humanos , Escoliose/cirurgia , Tração , Estudos Retrospectivos , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/cirurgia , Cifose/diagnóstico por imagem , Cifose/cirurgia , Resultado do Tratamento
8.
Front Bioeng Biotechnol ; 11: 1180073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334269

RESUMO

With the development of material science, hydrogels with antibacterial and wound healing properties are becoming common. However, injectable hydrogels with simple synthetic methods, low cost, inherent antibacterial properties, and inherent promoting fibroblast growth are rare. In this paper, a novel injectable hydrogel wound dressing based on carboxymethyl chitosan (CMCS) and polyethylenimine (PEI) was discovered and constructed. Since CMCS is rich in -OH and -COOH and PEI is rich in -NH2, the two can interact through strong hydrogen bonds, and it is theoretically feasible to form a gel. By changing their ratio, a series of hydrogels can be obtained by stirring and mixing with 5 wt% CMCS aqueous solution and 5 wt% PEI aqueous solution at volume ratios of 7:3, 5:5, and 3:7. Characterized by morphology, swelling rate, adhesion, rheological properties, antibacterial properties, in vitro biocompatibility, and in vivo animal experiments, the hydrogel has good injectability, biocompatibility, antibacterial (Staphylococcus aureus: 56.7 × 107 CFU/mL in the blank group and 2.5 × 107 CFU/mL in the 5/5 CPH group; Escherichia coli: 66.0 × 107 CFU/mL in the blank group and 8.5 × 107 CFU/mL in the 5/5 CPH group), and certain adhesion (0.71 kPa in the 5/5 CPH group) properties which can promote wound healing (wound healing reached 98.02% within 14 days in the 5/5 CPH group) and repair of cells with broad application prospects.

9.
Adv Sci (Weinh) ; 10(16): e2207347, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37035946

RESUMO

Uncontrolled hemorrhage is still the most common cause of potentially preventable death after trauma in prehospital settings. However, there rarely are hemostatic materials that can achieve safely and efficiently rapid hemostasis simultaneously. Here, new carbonized cellulose-based aerogel hemostatic material is developed for the management of noncompressible torso hemorrhage, the most intractable issue of uncontrolled hemorrhage. The carbonized cellulose aerogel is derived from the Agaricus bisporus after a series of processing, including cutting, carbonization, purification, and freeze-drying. In vitro, the carbonized cellulose aerogels with porous structure show improved hydrophilicity, good blood absorption, and coagulation ability, rapid shape recoverable ability under wet conditions. And in vivo, the carbonized aerogels show effective hemostatic ability in both small and big animal serious hemorrhage models. The amount of blood loss and the hemostatic time of carbonized aerogels are all better than the positive control group. Moreover, the mechanism studies reveal that the good hemostatic ability of the carbonized cellulose aerogel is associated with high hemoglobin binding efficiency, red blood cell absorption, and platelets absorption and activation. Together, the carbonized aerogel developed in this study could be promising for the management of uncontrolled hemorrhage.


Assuntos
Agaricales , Hemostáticos , Animais , Hemorragia/terapia , Coagulação Sanguínea , Hemostáticos/uso terapêutico , Hemostáticos/química , Hemostáticos/farmacologia , Celulose/uso terapêutico
10.
Arch Orthop Trauma Surg ; 143(9): 5565-5574, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37029795

RESUMO

INTRODUCTION: Osteotomized debridement (OD) is increasingly used in the treatment of active thoracolumbar tuberculosis (TB). So far, no nomenclature has been established to describe the patterns of OD, and thus the surgical outcomes cannot be directly analyzed and compared among the patients treated with different extents of OD. The purpose of this study was to establish a reliable classification of OD for further study of spinal TB. MATERIALS AND METHODS: This was a multicenter retrospective study. The proposed classification included 6 grades of OD based on sagittal range of vertebral body destruction: grade 0 involves single-level intervertebral disc and adjacent superficial endplates; grade 1 involves adjacent endplates and vertebral bodies, but no pedicle is involved; grade 2 involves adjacent endplates, vertebral bodies, and a lower or upper pedicle; grade 3 involves adjacent endplates, vertebral bodies, and both of lower and upper pedicles; grade 4 involves an entire vertebral body and an adjacent lower or upper pedicle; grade 5 involves two continuous entire vertebral bodies. Two hundred and five patients with active thoracolumbar TB who underwent OD surgery were included, and all ODs were classified. The reliability of this classification was evaluated twice by 10 readers, and Fleiss kappa coefficients were calculated. RESULTS: In the 205 patients, 208 ODs were performed. Grade 2 OD was the commonest type (98/208, 47.1%), followed by grade 1 (50/208, 24.0%), grade 3 (26/208, 12.5%), grade 0 (20/208, 9.6%), grade 4 (8/208, 3.8%), and grade 5 (6/208, 2.9%). The average accuracy of the two readings was 86.2% and 90.1%, respectively. The intra-rater reliability for the classification was "almost perfect agreement" with a Fleiss kappa coefficient average of 0.92. The inter-rater reliability was "almost perfect agreement" with a coefficient average of 0.89 for two readings. CONCLUSIONS: This classification proved to be intuitive and reliable. The graded OD provides a platform for preoperative evaluation and allows comparative analysis of clinical outcomes in different extents of OD.


Assuntos
Vértebras Lombares , Tuberculose da Coluna Vertebral , Humanos , Estudos Retrospectivos , Desbridamento , Reprodutibilidade dos Testes , Vértebras Lombares/cirurgia , Vértebras Torácicas/cirurgia , Tuberculose da Coluna Vertebral/cirurgia , Resultado do Tratamento
11.
J Neurosurg Spine ; 38(3): 340-347, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36683189

RESUMO

OBJECTIVE: The purpose of this study was to validate the Global Alignment and Proportion (GAP) score as a predictor of health-related quality of life (HRQOL) outcomes for patients undergoing adult spinal deformity (ASD) surgery. METHODS: This was a retrospective cohort study of patients with ASD undergoing long-segment spine fusions (≥ 5 vertebrae fused) at a single institution over a 2-year period (n = 85). Radiographic parameters were measured at preoperative, 6-week postoperative, 1-year postoperative, and 2-year postoperative visits. GAP scores were calculated using 4 sagittal parameters: relative pelvic version, relative lumbar lordosis, lordosis distribution index, and relative spinopelvic alignment. Patients were stratified into 3 GAP categories at each time point: proportioned (score 0-2), moderately disproportioned (score 3-6), and severely disproportioned (score ≥ 7). HRQOL outcomes were collected at preoperative, 1-year postoperative, and 2-year postoperative visits; these measures included patient self-reported outcome measures (i.e., PROMIS), Scoliosis Research Society-22 spinal deformity questionnaire (SRS-22), and Oswestry Disability Index (ODI) scores. RESULTS: Overall, 42% of cases were revision surgeries and 96.5% of patients underwent fusion to the sacrum. The mean preoperative GAP score significantly improved from preoperative (7.84) to immediate postoperative (3.31) assessment (p < 0.001). Similarly, the percentage of patients categorized as proportioned improved from 9.4% at preoperative to 45.9% at immediate postoperative evaluation. The preoperative GAP score or category was not significantly associated with any preoperative HRQOL outcome metrics. The immediate postoperative GAP score was not correlated with any 1-year HRQOL outcomes. However, the immediate postoperative GAP score was significantly associated with 2-year SRS-22 outcomes, including SRS-22 function (r = -0.35, p < 0.01), self-image (r = -0.27, p = 0.044), and subtotal (r = -0.35, p < 0.01) scores. As compared to severely disproportioned patients, proportioned patients had better SRS-22 pain (4.08 vs 3.17, p = 0.04), satisfaction (4.40 vs 3.50, p = 0.02), and subtotal (4.01 vs 3.27, p = 0.036) scores. The immediate postoperative GAP score was also significantly associated with 2-year PROMIS outcomes, including PROMIS pain (r = 0.31, p = 0.023) and physical function (r = -0.35, p < 0.01) scores. As compared to severely disproportioned patients, proportioned patients had better PROMIS pain (53.18 vs 63.60, p = 0.025) and physical function (41.66 vs 34.18, p = 0.017) scores. Postoperative GAP score or category did not predict any ODI outcomes. CONCLUSIONS: The postoperative GAP score is a predictor of long-term HRQOL outcomes following ASD surgery, and proportioned patients are more likely to have less pain and be satisfied with their surgery. However, the postoperative GAP score does not predict outcomes as measured by ODI.


Assuntos
Lordose , Escoliose , Adulto , Humanos , Lordose/cirurgia , Qualidade de Vida , Estudos Retrospectivos , Resultado do Tratamento , Escoliose/cirurgia , Vértebras Lombares/cirurgia , Dor
12.
Int Orthop ; 47(1): 201-208, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326896

RESUMO

PURPOSE: To investigate spinal realignment in patients with severe post-tubercular kyphosis (PTK) who underwent posterior vertebral column resection (PVCR) and its correlation with patient-reported outcomes (PROs). METHODS: Eighty-two patients were included in this study. Spinopelvic parameters (focal scoliosis (FS), coronal balance (CB), sagittal vertical axis (SVA), focal kyphosis (FK), C2-7 lordosis (CL), thoracic kyphosis (TK), lumbar lordosis (LL), sacral slope (SS), pelvic tilt (PT), pelvic incidence (PI), and pelvic incidence minus lumbar lordosis (PI-LL)) and PROs (Visual Analog Scale (VAS) and Oswestry Disability Index (ODI)) were analyzed. The correlation between spinopelvic parameters and PROs was evaluated. RESULTS: FK, FS, CL, TK, LL, and PI-LL significantly changed after surgery. FK decreased from pre-operative 108.5 ± 16.4° to 31.8 ± 4.5° at three months after surgery and increased to 38.7 ± 6.6° at final follow-up (P < 0.001). FS decreased from pre-operative 20.9 ± 2.2° to 5.1 ± 2.2° at final follow-up (P < 0.001). CL decreased from pre-operative 7.2 ± 7.3° to 3.3 ± 8.3° at final follow-up (P = 0.002). TK improved from pre-operative - 5.6 ± 7.1° to 12.9 ± 8.2° at final follow-up (P < 0.001). LL decreased from pre-operative 75.5 ± 12.6° to 45.5 ± 7.9° at final follow-up (P < 0.001). PI-LL improved from pre-operative - 24.8 ± 13.4° to 4.8 ± 9.9° at final follow-up (P < 0.001). The improvement of PROs was found to be significantly correlated with the variations of FK, CL, TK, LL, and PI-LL. The multiple regression analysis revealed that FK was an independent predictor for the improvement of VAS and ODI. CONCLUSIONS: PVCR is effective in treating severe PTK, which can significantly improve patients' clinical and radiographic outcomes. Spine surgeons should pay more attention to reducing the residual kyphosis.


Assuntos
Cifose , Lordose , Escoliose , Fusão Vertebral , Humanos , Lordose/cirurgia , Seguimentos , Cifose/diagnóstico por imagem , Cifose/etiologia , Cifose/cirurgia , Escoliose/cirurgia , Sacro , Medidas de Resultados Relatados pelo Paciente
13.
Oxid Med Cell Longev ; 2022: 9049571, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267817

RESUMO

Purpose: The most prevalent primary malignant tumor of CNS is glioma, which has a dismal prognosis. The theory of oxidative stress is one of the important theories in the study of its occurrence and development mechanism. In this study, the impacts of PCBP2 on glioma sufferers and the possible mechanisms were examined. Methods: Patients with glioma were obtained from May 2017 to July 2018. Quantitative PCR, microarray analysis, western blot analysis, and immunofluorescence were used in this experiment. Results: PCBP2 mRNA expression level and protein expression in patients with glioma were upregulated compared with paracancerous tissue. OS and DFS of PCBP2 low expression in patients with glioma were higher than those of PCBP2 high expression. PCBP2 promoted the progression and metastasis of glioma. PCBP2 reduced oxidative stress-induced apoptosis of glioma. PCBP2 suppressed the cGAS/STING pathway of glioma. PCBP2 protein interlinked with cGAS and cGAS was one target for PCBP2. METTL3-mediated m6A modification increases PCBP2 stability. Conclusion: Along the cGAS-STING signal pathway, PCBP2 decreased the apoptosis that oxidative stress-induced glioma caused, which might be a potential target to suppress oxidative stress-induced apoptosis of glioma.


Assuntos
Glioma , Metiltransferases , Estresse Oxidativo , Proteínas de Ligação a RNA , Humanos , Apoptose , Glioma/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Nucleotidiltransferases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
14.
Transl Pediatr ; 10(1): 215-222, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33633956

RESUMO

After corrective osteotomy of cubitus varus, the lateral condylar prominence is a common problem, which is believed to be due to the unequal relative cuts of the lateral base wedge osteotomy. Therefore, several related solutions have been proposed, such as dome osteotomy and step-cut osteotomies, which solve the above problems to a certain extent. This study aimed to: (I) use a modified corpectomy to correct the deformity, and (II) present a new corpectomy method that uses a 3D-printed specific guide with an isosceles triangle osteotomy. A 12-year-old male presented with a -30-degree cubitus varus deformity 5 years after a supracondylar fracture of the right humerus. The degree of correction was determined from the varus angle and the normal carrying angle on the normal side. A rotating isosceles triangle osteotomy was determined by using Mimics software. The accuracy of the osteotomy angle was confirmed by postoperative radiography. The mean postoperative carrying angle was found to be preserved at the 10-month follow-up, with no complications. A rotating isosceles triangle osteotomy with a 3D-printed patient-specific guide may be providing a relative accurate result. However, in order to obtain more rigorous research conclusions, more cases should be added to examine this methodology for bone deformity surgery in the near future.

15.
J Orthop Surg (Hong Kong) ; 28(3): 2309499020967110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33118440

RESUMO

PURPOSE: Sacropelvic fixation continues to present challenges when involved in the adult spinal deformity correction. The S2 alar iliac (S2AI) fixation is commonly used in sacropelvic fixation. Several techniques, including intraoperative navigation and freehand technique, were used for S2AI screws placement. The aim of this study is to analyze the anatomic parameters for S2AI screw trajectory in Asian population and introduce a novel technique described as a three-dimensional printed template guided technique (TGT). Meanwhile, the accuracy and safety of this technique were compared with the conventional freehand technique. METHODS: The S2AI trajectory parameters were measured in 100 Asian adult volunteers. Parameters were compared between different genders. Forty-eight adult patients who underwent S2AI screw placement were reviewed: 28 patients received freehand technique and 20 patients received TGT technique. Postoperative computed tomography was used to assess the accuracy of screw trajectory and cortex violation-related complications were recorded. RESULTS: The cephalocaudal angles (CAs), maximal length of screw pathway, narrowest width of pathway within the iliar teardrop, distance from the center of teardrop to sciatic notch, and distance of the start point distal to S1 dorsal foramen showed significant gender-related difference (p < 0.05). All 48 patients were placed S2AI screws bilaterally (40 screws in TGT vs. 56 screws in freehand). One screw penetrated iliac cortex in the TGT group but 10 screws penetrated iliac cortex in the freehand group (3% vs. 17.9%) (p < 0.05). CONCLUSION: Approximately 30-35° of CA and 39° mediolateral angle are appropriate for S2AI screw placement in Asian patients. Either freehand or TGT technique is safe for S2AI screw placement. TGT technique is more accurate compared with the conventional freehand technique. TRIAL REGISTRATION: This is a retrospective study.


Assuntos
Parafusos Ósseos , Ílio/cirurgia , Impressão Tridimensional , Sacro/cirurgia , Doenças da Coluna Vertebral/cirurgia , Fusão Vertebral/métodos , Tomografia Computadorizada por Raios X/métodos , Feminino , Humanos , Ílio/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sacro/diagnóstico por imagem , Doenças da Coluna Vertebral/diagnóstico
16.
Mater Sci Eng C Mater Biol Appl ; 113: 110971, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32487389

RESUMO

Cellular bilayer and its membrane have been mimicked and for decades, e.g., to synthesize amphiphilic carriers for controlled release. Here we report using nanosized cellular microtubules (MT) as scaffolding template and amphiphilic cytomembrane fragment to self-assemble with hydrophobic carbon nanotubes (MWNT). The hybrid was then cross-linked to form a conductive scaffold. Polyaniline (PANI) was finally added to the nanocomposite to enhance conductivity. Being an electrode, the obtained cell-based conductive gel raise interfacial surface area, increase the conductivity of the material, and enhance the energy density and power density of the material with a relatively low MWNTs concentration (less than 4.8 wt%). The cell-based supercapacitor reaches a specific capacitance of 209.2 F/g and thus the fabricated cell-based electrode achieves a conductivity of 38Scm-1. The cellular electric device exhibits great potential for future implantable bio-device and bio-electronic interface applications.


Assuntos
Eletrônica , Microtúbulos/química , Nanocompostos/química , Nanotubos de Carbono/química , Compostos de Anilina/química , Animais , Capacitância Elétrica , Condutividade Elétrica , Eletrodos , Fibroblastos/citologia , Fibroblastos/metabolismo , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Ratos , Ratos Sprague-Dawley
17.
J Cancer ; 11(6): 1351-1358, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32047542

RESUMO

Objectives: Ring finger protein 187 (RNF187) was recently demonstrated to be up-regulation and function as a promoter in multiple cancers. However, the roles of RNF187 in osteosarcoma (OS) are unclear. Here, we tried to reveal the clinicopathological and biological roles of RNF187 in OS. Materials and Methods: We employed the quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) to determine the expression of RNF187 in OS tissues and cells. Migration and invasion capacities were analyzed by wound healing and transwell assays, and colony formation and CCK8 assays were performed to investigate proliferative ability. The functional effects of RNF187 on OS drugs resistance were further determined by CCK8 and western blot assays. Then, the relationship between RNF187 expression and clinical implications was analyzed by tissue microarrays (TMAs) including 51 OS cases. Moreover, the prognostic value was also determined by Kaplan-Meier analysis. Results: We reported that RNF187 mRNA was significantly increased in OS tissues compared to matched nontumorous tissues (3.83 ±0.79 vs. 1.70 ± 0.63), which was in line with the IHC assay in TMAs. By RNA interference and cDNA transfection, we showed high level of RNF187 increased the migration, invasion and proliferation of OS cells. Moreover, we demonstrated that elevated RNF187 expression induced OS cell drugs resistance, activated the ERK1/2 molecular and markedly enhanced the BCL-2 expression. Clinically, OS patients with high level of RNF187 was associated with Histologic differentiation (p=0.001), an advanced Enneking stage (p=0.001), response to chemotherapy (p=0.004), and metastasis (p= 0.001). Clinically, our data displayed that the RNF187 overexpression in OS samples associated with shorten overall survival (p=0.001) and high tumor recurrence (p=0.001) in postoperative OS patients. Conclusions: Our results indicate that Elevated RNF187 expression is a new adverse outcomes marker for OS patients and may be used as a new therapeutic target of OS.

18.
Macromol Biosci ; 16(9): 1381-90, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27280860

RESUMO

Photo-crosslinking and self-healing have received considerable attention for the design of intelligent materials. A novel photostimulated, self-healing, and cytocompatible hydrogel system is reported. A coumarin methacrylate crosslinker is synthesized to modify the polyacrylamide-based hydrogels. With the [2+2] cyclo-addition of coumarin moieties, the hydrogels exhibit excellent self-healing capacity when they are exposed to light with wavelengths at 280 and 365 nm, respectively. To enhance cell compatibility, a poly (amidoamine) crosslinker is also synthesized. Variations in light exposure times and irradiation wavelengths are found to alter the self-healing property of the hydrogels. The hydrogels are shown to induce a regular cellular pattern. The hydrogels are used to regulate bone marrow stromal cells differentiation. The relative mRNA expressions are recorded to monitor the osteogenic differentiation of the cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Hidrogéis/farmacologia , Luz , Teste de Materiais/métodos , Células-Tronco Mesenquimais/citologia , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Processamento de Imagem Assistida por Computador , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Metacrilatos/síntese química , Metacrilatos/química , Camundongos , Microscopia de Fluorescência , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Poliaminas/síntese química , Poliaminas/química , Espectroscopia de Prótons por Ressonância Magnética , Reação em Cadeia da Polimerase em Tempo Real
19.
J Funct Biomater ; 7(1)2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26959071

RESUMO

Fabricating ideal scaffolds for bone tissue engineering is a great challenge to researchers. To better mimic the mineral component and the microstructure of natural bone, several kinds of materials were adopted in our study, namely gelatin, polycaprolactone (PCL), nanohydroxyapatite (nHA), and bone powder. Three types of scaffolds were fabricated using electrospinning; gelatin/PCL, gelatin/PCL/nHA, and gelatin/PCL/bone powder. Scaffolds were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. Then, Adipose-derived Stem Cells (ADSCs) were seeded on these scaffolds to study cell morphology, cell viability, and proliferation. Through this study, we found that nHA and bone powder can be successfully united in gelatin/PCL fibers. When compared with gelatin/PCL and gelatin/PCL/nHA, the gelatin/PCL/bone powder scaffolds could provide a better environment to increase ADSCs' growth, adhesion, and proliferation. Thus, we think that gelatin/PCL/bone powder has good biocompatibility, and, when compared with nHA, bone powder may be more effective in bone tissue engineering due to the bioactive factors contained in it.

20.
Tissue Eng Part C Methods ; 21(10): 1015-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25951851

RESUMO

A persistent challenge in tissue engineering is the fabrication of manipulatable scaffolds for implantation in clinical treatments and use in disease models for drug screening. Electrospinning of nanofibrous membranes is an emerging technology in artificial extracellular matrix (ECM) design that can offer precisely tunable microenvironments upon assembly into three-dimensional (3D) scaffolds that mimic the in vivo ECM structure. In this study, we report a facile and versatile strategy for preparing 3D multilayered constructs from Fe3O4/polycaprolactone (PCL)/gelatin nanofibrous membranes. This method combines membrane assembly with noncontact magnetic force to preserve the mechanical integrity and interconnectivity of the 3D scaffolds. An ordered layer structure can be achieved using a magnetic control technique through the addition of magnetic nanoparticles into the PCL/gelatin nanofibers. We first verified the magnetic properties and structures of magnetic nanofibers according to X-ray diffraction, hysteresis, scanning electron microscopy, and transmission electron microscopy. We tested the potential toxicity and osteogenic differentiation of mesenchymal stem cells seeded on the layered scaffolds. To add further functionality to the scaffolds, the membranes were coated with silver nanoparticles and shown to inhibit the growth of Escherichia coli and Staphylococcus aureus, which are responsible for most cases of infection-related implant failure. Finally, we tested the utility of magnetic membranes implanted in an animal model as a contrast agent for magnetic resonance imaging. Scaffolds formed using the presented magnetically guided fabrication strategy have the potential to mimic the structure and function of human tissues and also may be applied in disease models to study cell-cell interactions.


Assuntos
Compostos Férricos/química , Gelatina/química , Campos Magnéticos , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Poliésteres/química , Alicerces Teciduais/química , Animais , Matriz Extracelular/química , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Nanomedicina Teranóstica , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...