Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISA Trans ; 139: 574-585, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37173264

RESUMO

The Internet of Things (IoT) is crucial in developing next-generation high-speed railways (HSRs). HSR IoT enables intelligent diagnosis of trains using multi-sensor data, which is critical for maintaining high speeds and ensuring passenger safety. Graph neural network (GNN)-based methods have gained popularity in HSR IoT research due to the ability to represent the sensor network as intuitive graphs. However, labeling monitoring data in the HSR scenario takes time and effort. To address this challenge, we propose a semi-supervised graph-level representation learning approach called MIM-Graph, which uses mutual information maximization to learn from a large amount of unlabeled data. First, the multi-sensor data is converted into association graphs based on their spatial topology. The unsupervised encoder is trained using global-local mutual maximization. The teacher-student framework transfers knowledge from the unsupervised encoder learned to the supervised encoder, which is trained using a small amount of labeled data. As a result, the supervised encoder learns distinguishable representations for intelligent diagnosis of HSR. We evaluate the proposed method using CWRU dataset and data from HSR Bogie test platform, and the experimental results demonstrate the effectiveness and superiority of MIM-Graph.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36197866

RESUMO

Fault diagnosis is vital to ensuring the security of rotating machinery operations. While fault data obtained from mechanical equipment for this issue are often insufficient and of no labels. In this case, supervised algorithms cannot come into play. Hence, this article proposes a self-supervised simple Siamese framework (SSF) for bearing fault diagnosis based on the contrastive learning algorithm SimSiam which uses a simplified Siamese network to find the distinguishable features of different fault categories. SSF consists of a weight-sharing encoder applied on two inputs, a nonlinear predictor and a linear classifier. SSF learns invariant characteristics of fault samples via maximizing the similarity between two views of each inputted sample. Several data augmentation (DA) methods for vibration signals, which provide different sample views for the model, are also studied, for it is crucial for contrastive learning. After fine-tuning the learned encoder and a linear layer classifier with a small subset of labeled data (1%-5% of the total samples), the network achieves satisfactory performance for bearing fault diagnosis. A series of experiments based on the data from three different scenarios are used to verify the proposed methods, getting 100%, 99.38%, and 98.87% accuracy separately.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...