Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Food Chem ; 419: 136051, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030210

RESUMO

This study employed solution crystallization in food engineering to prepare a high-purity vitamin intermediate, optimize its crystal morphology and regulate its particle size distribution. Model analysis was performed to investigate the quantitative correlations between the process variables and target parameters, indicating the substantial effect of temperature on separation performance. Under optimal conditions, the product purity exceeded 99.5%, which meets the requirement of the subsequent synthesis process. A high crystallization temperature reduced the agglomeration phenomenon and increased particle liquidity. Herein, we also proposed a temperature cycling strategy and a gassing crystallization routine to optimize the particle size. The results illustrated that the synergistic control of temperature and gassing crystallization could substantially improve the separation process. Overall, based on a high separation efficiency, this study combined model analysis and process intensification pathways to explore the process parameters on product properties such as purity, crystal morphology, and particle size distribution.


Assuntos
Cristalização , Cristalização/métodos , Tamanho da Partícula , Temperatura , Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...