Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Chem ; 55(5): 472-484, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27283595

RESUMO

A new pulse sequence for obtaining 19 F detected DOSY (diffusion ordered spectroscopy) spectra of fluorinated molecules is presented and used to study fluoropolymers based on vinylidene fluoride and chlorotrifluoroethylene. The performance of 19 F DOSY NMR experiments (and in general any type of NMR experiment) on fluoropolymers creates some unique complications that very often prevent detection of important signals. Factors that create these complications include: (1) the presence of many scalar couplings among 1 H, 19 F and 13 C; (2) the large magnitudes of many 19 F homonuclear couplings (especially 2 JFF ); (3) the large 19 F chemical shift range; and (4) the low solubility of these materials (which requires that experiments be performed at high temperatures). A systematic study of the various methods for collecting DOSY NMR data, and the adaptation of these methods to obtain 19 F detected DOSY data, has been performed using a mixture of low molecular weight, fluorinated model compounds. The best pulse sequences and optimal experimental conditions have been determined for obtaining 19 F DOSY spectra. The optimum pulse sequences for acquiring 19 F DOSY NMR data have been determined for various circumstances taking into account the spectral dispersion, number and magnitude of couplings present, and experimental temperature. Pulse sequences and experimental parameters for optimizing these experiments for the study of fluoropolymers have been studied. Copyright © 2016 John Wiley & Sons, Ltd.

2.
Inorg Chem ; 55(21): 11354-11361, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27718548

RESUMO

It has been proposed that the fullerene formation mechanism involves either a top-down or bottom-up pathway. Despite different starting points, both mechanisms approve that particular fullerenes or metallofullerenes are formed through a consecutive stepwise process involving Stone-Wales transformations (SWTs) and C2 losses or additions. However, the formation pathway has seldomly been defined at the atomic level due to the missing-link fullerenes. Herein, we present the isolation and crystallographic characterization of two isomeric clusterfullerenes Sc2O@C2v(3)-C78 and Sc2O@D3h(5)-C78, which are closely related via a single-step Stone-Wales (SW) transformation. More importantly, these novel Sc2O@C78 isomers represent the key links in a well-defined formation pathway for the majority of solvent-extractable clusterfullerenes Sc2O@C2n (n = 38-41), providing molecular structural evidence for the less confirmed fullerene formation mechanism. Furthermore, DFT calculations reveal a SWT with a notably low activation barrier for these Sc2O@C78 isomers, which may rationalize the established fullerene formation pathway. Additional characterizations demonstrate that these Sc2O@C78 isomers feature different energy bandgaps and electrochemical behaviors, indicating the impact of SW defects on the energetic and electrochemical characteristics of metallofullerenes.

3.
Inorg Chem ; 55(4): 1926-33, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26840749

RESUMO

By introducing CO2 as the oxygen source during the arcing process, a new isomer of Sc2O@C82, Sc2O@C(3v)(8)-C82, previously investigated only by computational studies, was discovered and characterized by mass spectrometry, UV-vis-NIR absorption spectroscopy, cyclic voltammetry, (45)Sc NMR, density functional theory (DFT) calculations, and single-crystal X-ray diffraction. The crystallographic analysis unambiguously elucidated that the cage symmetry was assigned to C(3v)(8) and suggests that Sc2O cluster is disordered inside the cage. The comparative studies of crystallographic data further reveal that the Sc1-O-Sc2 angle is in the range of 131.0-148.9°, much larger than that of the Sc2S@C(3v)(8)-C82, demonstrating a significant flexibility of dimetallic clusters inside the cages. The electrochemical studies show that the electrochemical gap of Sc2O@C(3v)(8)-C82 is 1.71 eV, the largest among those of the oxide cluster fullerenes (OCFs) reported so far, well correlated with its rich abundance in the reaction mixture of OCF synthesis. Moreover, the comparative electrochemical studies suggest that both the dimetallic clusters and the cage structures have major influences on the electronic structures of the cluster fullerenes. Computational studies show that the cluster can rotate and change the Sc-O-Sc angle easily at rather low temperature.

4.
Inorg Chem ; 54(20): 9845-52, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26421874

RESUMO

A new oxide cluster fullerene, Sc2O@C(2v)(5)-C80, has been isolated and characterized by mass spectrometry, UV-vis-NIR absorption spectroscopy, cyclic voltammetry, (45)Sc NMR, DFT calculations, and single crystal X-ray diffraction. The crystallographic analysis unambiguously elucidated that the cage symmetry was assigned to C(2v)(5)-C80 and suggests that the Sc2O cluster is ordered inside the cage. The crystallographic data further reveals that the Sc1-O-Sc2 angle is much larger than that found in Sc2O@T(d)(19151)-C76 but almost comparable to that in Sc2O@Cs(6)-C82, suggesting that the endohedral Sc2O unit is flexible and can display large variation in the Sc-O-Sc angle, which depends on the size and shape of the cage. Computational studies show that there is a formal transfer of four electrons from the Sc2O unit to the C80 cage, i.e., (Sc2O)(4+)@(C80)(4-), and the HOMO and LUMO are mainly localized on the C80 framework. Moreover, thermal and entropic effects are seen to be relevant in the isomer selection. Comparative studies between the recently reported Sc2C2@C(2v)(5)-C80 and Sc2O@C(2v)(5)-C80 reveal that, despite their close structural resemblance, subtle differences exist on the crystal structures, and the clusters exert notable impact on their spectroscopic properties as well as interactions between the clusters and corresponding cages.

5.
Chemistry ; 21(31): 11110-7, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26088830

RESUMO

A new cluster fullerene, Sc2 O@Td (19151)-C76 , has been isolated and characterized by mass spectrometry, UV/Vis/NIR absorption, (45) Sc NMR spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction. The crystallographic analysis unambiguously assigned the cage structure as Td (19151)-C76 , which is the first tetrahedral fullerene cage characterized by single-crystal X-ray diffraction. This study also demonstrated that the Sc2 O cluster has a much smaller ScOSc angle than that of Sc2 O@Cs (6)-C82 and the Sc2 O unit is fully ordered inside the Td (19151)-C76 cage. Computational studies further revealed that the cluster motion of the Sc2 O is more restrained in the Td (19151)-C76 cage than that in the Cs (6)-C82 cage. These results suggest that cage size affects not only the shapes but also the cluster motion inside fullerene cages.

6.
Soft Matter ; 10(27): 4833-9, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24860850

RESUMO

In this article, we have synthesized a polymer containing regulated azobenzene groups by one-pot multi-component polymerization (MCP) based on Passerini reaction, and investigated its self-assembly behavior and photo-induced deformation properties. We found that this molecule can form spherical structures with sizes ranging from hundreds of nanometers to several micrometers when dissolved in THF. NMR and FTIR studies indicate that there are associated hydrogen bonds among the molecules in the aggregates, which are responsible for the formation of the nanospheres. By controlling the stirring rate as the THF suspension is dropped into water, the nanospheres can be sorted according to their size. In this way, we have obtained nanospheres with relatively uniform diameter. When irradiated by UV light in the aqueous medium, the nanospheres tend to aggregate into large clusters, while in dry state they are ready to merge into island-like structures, showing a good photo-induced deformation property.

7.
J Mater Chem B ; 2(47): 8303-8309, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32261999

RESUMO

We report the generation of a novel self-assembled platinum (Pt) prodrug from a short peptide derivative, which acted as a substrate for the phosphatase-catalyzed dephosphorylation reaction, and a Pt(iv) complex, which could undergo supramolecular self-assembly in the presence of alkaline phosphatase, and perform controlled release of the Pt(ii) drug under the reductive conditions of tumor cells. This self-assembled prodrug showed significant antitumor growth effects on a breast cancer xenograft model based on 4T1 cells in vivo, but much lower toxicity towards the kidney, liver, spleen and other major organs than the free cisplatin drug in mice. Such improved antitumor efficacy could be ascribed to the localized and sustained release of the Pt(ii) anticancer drug from the supramolecular self-assembly of the Pt(iv) prodrug, which was triggered by phosphatases in tumor sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...