Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373493

RESUMO

Plant biology research has currently entered the post-genomics era with the advances in genomic technologies [...].


Assuntos
Genômica , Multiômica , Plantas/genética , Tecnologia
2.
Vaccine ; 40(20): 2869-2874, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35400561

RESUMO

BACKGROUND: In partial response to the coronavirus disease 2019 (COVID-19) pandemic, countries around the world are conducting large-scale vaccination campaigns. Real-world estimates of vaccine effectiveness (VE) against the B.1.617.2 (Delta) variant are still limited. An outbreak in Ruili city of Chinaprovided an opportunity to evaluate VE against the Delta variant of two types of COVID-19 vaccines in use in China and globally - inactivated (CoronaVac and BBIBP-CorV) and adenovirus type 5 vectored (Convidecia) vaccines. METHODS: We estimated VE using a retrospective cohort study two months after the Ruili vaccination campaign (median: 63 days). Close contacts of infected people (Chinese nationality, 18 years and above) were included to assess VE against symptomatic Covid-19, COVID-19 pneumonia, and severe COVID-19. We calculated the relative risks (RR) of the outcomes for unvaccinated compared with fully vaccinated individuals. We used logistic regression analyses to estimate adjusted VEs, controlling for gender and age group (18-59 years and 60 years and over).We compared unvaccinated and fully vaccinated individuals on duration of RT-PCR positivity and Ct value. FINDINGS: There were 686 close contacts eligible for VE estimates. Adjusted VE ofad5-vectored vaccine was 61.5% (95% CI, 9.5-83.6) against symptomatic COVID-19, 67.9% (95%CI: 1.7-89.9) against pneumonia, and 100% (95%CI: 36.6-100) against severe/critical illness. For the two inactivated vaccines, combined VE was 74.6% (95% CI, 36.0-90.0) against symptomatic COVID-19, 76.7% (95% CI: 19.3-93.3) against pneumonia, and 100% (95% CI: 47.6-100) against severe/critical COVID-19. There were no statistically significant differences in VE between twoinactivated vaccines for symptomatic COVID-19 and for pneumonia, nor were there statistically significant differences between inactivated and ad5-vectored VE in any of the three outcomes. The median durations of RT-PCR positivity were 17 days for fifteen people vaccinated with an inactivated vaccine, 18 days for forty-four people vaccinated with the Ad5 vectored vaccine, and 26 days for eleven unvaccinated individuals. INTERPRETATION: These results provide reassuring evidence that the three vaccines are effective at preventing Delta-variant COVID-19 in short term following vaccination campaign, and are most effective at preventing more serious illness. The findings of reduced duration of RT-PCR positivity and length of hospital stay associated with full vaccination suggests potential saving of health-care system resources.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adenoviridae/genética , Adolescente , Adulto , COVID-19/epidemiologia , COVID-19/prevenção & controle , China/epidemiologia , Surtos de Doenças/prevenção & controle , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , SARS-CoV-2 , Adulto Jovem
3.
New Phytol ; 231(4): 1644-1657, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914919

RESUMO

Understanding the mechanisms of iron trafficking in plants is key to enhancing the nutritional quality of crops. Because it is difficult to image iron in transit, we currently have an incomplete picture of the route(s) of iron translocation in developing seeds and how the tissue-specific distribution is established. We have used a novel approach, combining iron-57 (57 Fe) isotope labelling and nanoscale secondary ion mass spectrometry (NanoSIMS), to visualize iron translocation between tissues and within cells in immature wheat grain, Triticum aestivum. This enabled us to track the main route of iron transport from maternal tissues to the embryo through the different cell types. Further evidence for this route was provided by genetically diverting iron into storage vacuoles, with confirmation provided by histological staining and transmission electron microscopy energy dispersive X-ray spectroscopy (TEM-EDS). Almost all iron in both control and transgenic grains was found in intracellular bodies, indicating symplastic rather than apoplastic transport. Furthermore, a new type of iron body, highly enriched in 57 Fe, was observed in aleurone cells and may represent iron being delivered to phytate globoids. Correlation of the 57 Fe enrichment profiles obtained by NanoSIMS with tissue-specific gene expression provides an updated model of iron homeostasis in cereal grains with relevance for future biofortification strategies.


Assuntos
Ferro , Triticum , Grão Comestível , Ácido Fítico , Sementes
4.
PLoS One ; 16(2): e0246763, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606697

RESUMO

Amino acids are delivered into developing wheat grains to support the accumulation of storage proteins in the starchy endosperm, and transporters play important roles in regulating this process. RNA-seq, RT-qPCR, and promoter-GUS assays showed that three amino acid transporters are differentially expressed in the endosperm transfer cells (TaAAP2), starchy endosperm cells (TaAAP13), and aleurone cells and embryo of the developing grain (TaAAP21), respectively. Yeast complementation revealed that all three transporters can transport a broad spectrum of amino acids. RNAi-mediated suppression of TaAAP13 expression in the starchy endosperm did not reduce the total nitrogen content of the whole grain, but significantly altered the composition and distribution of metabolites in the starchy endosperm, with increasing concentrations of some amino acids (notably glutamine and glycine) from the outer to inner starchy endosperm cells compared with wild type. Overexpression of TaAAP13 under the endosperm-specific HMW-GS (high molecular weight glutenin subunit) promoter significantly increased grain size, grain nitrogen concentration, and thousand grain weight, indicating that the sink strength for nitrogen transport was increased by manipulation of amino acid transporters. However, the total grain number was reduced, suggesting that source nitrogen remobilized from leaves is a limiting factor for productivity. Therefore, simultaneously increasing loading of amino acids into the phloem and delivery to the spike would be required to increase protein content while maintaining grain yield.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Grão Comestível/metabolismo , Triticum/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Cromatografia Líquida de Alta Pressão , Grão Comestível/crescimento & desenvolvimento , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Glutens/genética , Glutens/metabolismo , Espectroscopia de Ressonância Magnética , Nitrogênio/metabolismo , Floema/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Triticum/genética , Regulação para Cima
5.
Mol Breed ; 41(8): 49, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37309542

RESUMO

Wheat is a major staple food crop worldwide because of the unique properties of wheat flour. High molecular weight glutenin subunits (HMW-GSs), which are among the most critical determinants of wheat flour quality, are responsible for the formation of glutenin polymeric structures via interchain disulfide bonds. We herein describe the identification of a new HMW-GS Dy10 allele (Dy10-m619SN). The amino acid substitution (serine-to-asparagine) encoded in this allele resulted in a partial post-translational cleavage that produced two new peptides. These new peptides disrupted the interactions among gluten proteins because of the associated changes to the number of available cysteine residues for interchain disulfide bonds. Consequently, Dy10-m619SN expression decreased the size of glutenin polymers and weakened glutens, which resulted in wheat dough with improved cookie-making quality, without changes to the glutenin-to-gliadin ratio. In this study, we clarified the post-translational processing of HMW-GSs and revealed a new genetic resource useful for wheat breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01238-9.

6.
J Exp Bot ; 71(15): 4531-4546, 2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32462194

RESUMO

NPF genes encode membrane transporters involved in the transport of a large variety of substrates including nitrate and peptides. The NPF gene family has been described for many plants, but the whole NPF gene family for wheat has not been completely identified. The release of the wheat reference genome has enabled the identification of the entire wheat NPF gene family. A systematic analysis of the whole wheat NPF gene family was performed, including responses of specific gene expression to development and nitrogen supply. A total of 331 NPF genes (113 homoeologous groups) have been identified in wheat. The chromosomal location of the NPF genes is unevenly distributed, with predominant occurrence in the long arms of the chromosomes. The phylogenetic analysis indicated that wheat NPF genes are closely clustered with Arabidopsis, Brachypodium, and rice orthologues, and subdivided into eight subfamilies. The expression profiles of wheat NPF genes were examined using RNA-seq data, and a subset of 44 NPF genes (homoeologous groups) with contrasting expression responses to nitrogen and/or development in different tissues were identified. The systematic identification of gene composition, chromosomal locations, evolutionary relationships, and expression profiles contributes to a better understanding of the roles of the wheat NPF genes and lays the foundation for further functional analysis in wheat.


Assuntos
Regulação da Expressão Gênica de Plantas , Triticum , Proteínas de Transporte de Ânions , Expressão Gênica , Perfilação da Expressão Gênica , Genoma de Planta , Proteínas de Membrana Transportadoras , Família Multigênica , Transportadores de Nitrato , Peptídeos , Filogenia , Proteínas de Plantas/genética , Estresse Fisiológico , Triticum/genética
7.
J Cereal Sci ; 91: 102869, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32089586

RESUMO

The starchy endosperm of the mature wheat grain comprises three major cell types, namely sub-aleurone cells, prismatic cells and central cells, which differ in their contents of functional components: gluten proteins, starch, cell wall polysaccharides (dietary fibre) and lipids. Gradients are established during grain development but may be modified during grain maturation and are affected by plant nutrition, particularly nitrogen application, and environmental factors. Although the molecular controls of their formation are unknown, the high content of protein and low content of starch of sub-aleurone cells, compared to the other starchy endosperm cells types, may result from differences in developmental programming related to the cells having a separate origin (from anticlinal division of the aleurone cells). The gradients within the grain may be reflected in differences in the compositions of mill streams, particularly those streams enriched in the central and outer cells of the starchy endosperm, respectively, allowing the production of specialist flours for specific end uses.

8.
BMC Genomics ; 20(1): 628, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370780

RESUMO

BACKGROUND: Free asparagine is the precursor for acrylamide formation during cooking and processing of grains, tubers, beans and other crop products. In wheat grain, free asparagine, free glutamine and total free amino acids accumulate to high levels in response to sulphur deficiency. In this study, RNA-seq data were acquired for the embryo and endosperm of two genotypes of bread wheat, Spark and SR3, growing under conditions of sulphur sufficiency and deficiency, and sampled at 14 and 21 days post anthesis (dpa). The aim was to provide new knowledge and understanding of the genetic control of asparagine accumulation and breakdown in wheat grain. RESULTS: There were clear differences in gene expression patterns between the genotypes. Sulphur responses were greater at 21 dpa than 14 dpa, and more evident in SR3 than Spark. TaASN2 was the most highly expressed asparagine synthetase gene in the grain, with expression in the embryo much higher than in the endosperm, and higher in Spark than SR3 during early development. There was a trend for genes encoding enzymes of nitrogen assimilation to be more highly expressed in Spark than SR3 when sulphur was supplied. TaASN2 expression in the embryo of SR3 increased in response to sulphur deficiency at 21 dpa, although this was not observed in Spark. This increase in TaASN2 expression was accompanied by an increase in glutamine synthetase gene expression and a decrease in asparaginase gene expression. Asparagine synthetase and asparaginase gene expression in the endosperm responded in the opposite way. Genes encoding regulatory protein kinases, SnRK1 and GCN2, both implicated in regulating asparagine synthetase gene expression, also responded to sulphur deficiency. Genes encoding bZIP transcription factors, including Opaque2/bZIP9, SPA/bZIP25 and BLZ1/OHP1/bZIP63, all of which contain SnRK1 target sites, were also expressed. Homeologues of many genes showed differential expression patterns and responses, including TaASN2. CONCLUSIONS: Data on the genetic control of free asparagine accumulation in wheat grain and its response to sulphur supply showed grain asparagine levels to be determined in the embryo, and identified genes encoding signalling and metabolic proteins involved in asparagine metabolism that respond to sulphur availability.


Assuntos
Asparagina/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genótipo , Enxofre/farmacologia , Triticum/genética , Triticum/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/genética , Triticum/efeitos dos fármacos , Triticum/enzimologia
9.
J Agric Food Chem ; 67(31): 8706-8714, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31310118

RESUMO

Gradients in the contents and compositions of gluten proteins and free amino acids and the expression levels of gluten protein genes in developing wheat caryopses were determined by dividing the caryopsis into three longitudinal sections, namely, proximal (En1), middle (En2), and distal (En3) to embryo. The total gluten protein content was lower in En1 than in En2 and En3, with decreasing proportions of HMW-GS, LMW GS, and α/ß- and γ-gliadins and increasing proportions of ω-gliadins. These differences were associated with the abundances of gluten protein transcripts. Gradients in the proportions of the gluten protein polymers which affect dough processing quality also occurred, but not in total free amino acids. Microscopy showed that the lower gluten protein content in En1 may have resulted, at least in part, from the presence of modified cells in the dorsal part of En1, but the reasons for the differences in composition are not known.


Assuntos
Aminoácidos/química , Glutens/química , Triticum/química , Triticum/embriologia , Farinha/análise , Glutens/genética , Glutens/metabolismo , Triticum/genética , Triticum/metabolismo
10.
J Exp Bot ; 69(12): 3117-3126, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29660003

RESUMO

Gradients exist in the distribution of storage proteins in the wheat (Triticum aestivum) endosperm and determine the milling properties and protein recovery rate of the grain. A novel image analysis technique was developed to quantify both the gradients in protein concentration, and the size distribution of protein bodies within the endosperm of wheat plants grown under two different (20 or 28 °C) post-anthesis temperatures, and supplied with a nutrient solution with either high or low nitrogen content. Under all treatment combinations, protein concentration was greater in the endosperm cells closest to the aleurone layer and decreased towards the centre of the two lobes of the grain, i.e. a negative gradient. This was accompanied by a decrease in size of protein bodies from the outer to the inner endosperm layers in all but one of the treatments. Elevated post-anthesis temperature had the effect of increasing the magnitude of the negative gradients in both protein concentration and protein body size, whilst limiting nitrogen supply decreased the gradients.


Assuntos
Endosperma/fisiologia , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Temperatura , Triticum/fisiologia , Ensaios de Triagem em Larga Escala
11.
Sci Rep ; 7(1): 5461, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710348

RESUMO

Amino acid transporters have roles in amino acid uptake from soil, long-distance transport, remobilization from vegetative tissues and accumulation in grain. Critically, the majority of wheat grain nitrogen is derived from amino acids remobilized from vegetative organs. However, no systematic analysis of wheat AAT genes has been reported to date. Here, 283 full length wheat AAT genes representing 100 distinct groups of homeologs were identified and curated by selectively consolidating IWGSC CSSv2 and TGACv1 Triticum aestivum genome assemblies and reassembling or mapping of IWGSC CSS chromosome sorted reads to fill any gaps. Gene expression profiling was performed using public RNA-seq data from root, leaf, stem, spike, grain and grain cells (transfer cell (TC), aleurone cell (AL), and starchy endosperm (SE)). AATs highly expressed in roots are good candidates for amino acid uptake from soil whilst AATs highly expressed in senescing leaves and stems may be involved in translocation to grain. AATs in TC (TaAAP2 and TaAAP19) and SE (TaAAP13) may play important roles in determining grain protein content and grain yield. The expression levels of AAT homeologs showed unequal contributions in response to abiotic stresses and development, which may aid wheat adaptation to a wide range of environments.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Nitrogênio/metabolismo , Proteínas de Plantas/genética , Triticum/genética , Adaptação Fisiológica , Sistemas de Transporte de Aminoácidos/classificação , Sistemas de Transporte de Aminoácidos/metabolismo , Transporte Biológico , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Estresse Fisiológico , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
12.
J Exp Bot ; 66(20): 6447-59, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26220085

RESUMO

Willows (Salix spp.) are important as a potential feedstock for bioenergy and biofuels. Previous work suggested that reaction wood (RW) formation could be a desirable trait for biofuel production in willows as it is associated with increased glucose yields, but willow RW has not been characterized for cell wall components. Fasciclin-like arabinogalactan (FLA) proteins are highly up-regulated in RW of poplars and are considered to be involved in cell adhesion and cellulose biosynthesis. COBRA genes are involved in anisotropic cell expansion by modulating the orientation of cellulose microfibril deposition. This study determined the temporal and spatial deposition of non-cellulosic polysaccharides in cell walls of the tension wood (TW) component of willow RW and compared it with opposite wood (OW) and normal wood (NW) using specific antibodies and confocal laser scanning microscopy and transmission electron microscopy. In addition, the expression patterns of an FLA gene (SxFLA12) and a COBRA-like gene (SxCOBL4) were compared using RNA in situ hybridization. Deposition of the non-cellulosic polysaccharides (1-4)-ß-D-galactan, mannan and de-esterified homogalacturonan was found to be highly associated with TW, often with the G-layer itself. Of particular interest was that the G-layer itself can be highly enriched in (1-4)-ß-D-galactan, especially in G-fibres where the G-layer is still thickening, which contrasts with previous studies in poplar. Only xylan showed a similar distribution in TW, OW, and NW, being restricted to the secondary cell wall layers. SxFLA12 and SxCOBL4 transcripts were specifically expressed in developing TW, confirming their importance. A model of polysaccharides distribution in developing willow G-fibre cells is presented.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Polissacarídeos/metabolismo , Salix/crescimento & desenvolvimento , Parede Celular/fisiologia , Hibridização In Situ , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Proteínas de Plantas/metabolismo , Salix/genética , Salix/ultraestrutura , Madeira/genética , Madeira/crescimento & desenvolvimento , Madeira/ultraestrutura , Xilema/genética , Xilema/crescimento & desenvolvimento , Xilema/ultraestrutura
13.
Plant Biotechnol J ; 13(5): 625-35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25400203

RESUMO

Grain yield and protein content were determined for six wheat cultivars grown over 3 years at multiple sites and at multiple nitrogen (N) fertilizer inputs. Although grain protein content was negatively correlated with yield, some grain samples had higher protein contents than expected based on their yields, a trait referred to as grain protein deviation (GPD). We used novel statistical approaches to identify gene transcripts significantly related to GPD across environments. The yield and protein content were initially adjusted for nitrogen fertilizer inputs and then adjusted for yield (to remove the negative correlation with protein content), resulting in a parameter termed corrected GPD. Significant genetic variation in corrected GPD was observed for six cultivars grown over a range of environmental conditions (a total of 584 samples). Gene transcript profiles were determined in a subset of 161 samples of developing grain to identify transcripts contributing to GPD. Principal component analysis (PCA), analysis of variance (ANOVA) and means of scores regression (MSR) were used to identify individual principal components (PCs) correlating with GPD alone. Scores of the selected PCs, which were significantly related to GPD and protein content but not to the yield and significantly affected by cultivar, were identified as reflecting a multivariate pattern of gene expression related to genetic variation in GPD. Transcripts with consistent variation along the selected PCs were identified by an approach hereby called one-block means of scores regression (one-block MSR).


Assuntos
Grão Comestível/genética , Variação Genética , Nitrogênio/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Triticum/genética , Grão Comestível/metabolismo , Meio Ambiente , Fenótipo , Proteínas de Armazenamento de Sementes/genética , Transcriptoma , Triticum/metabolismo
14.
Planta ; 239(5): 1041-53, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24504696

RESUMO

The properties of the secondary cell wall (SCW) in willow largely determine the suitability of willow biomass feedstock for potential bioenergy and biofuel applications. SCW development has been little studied in willow and it is not known how willow compares with model species, particularly the closely related genus Populus. To address this and relate SCW synthesis to candidate genes in willow, a tractable bud culture-derived system was developed in Salix purpurea, and cell wall composition and RNA-Seq transcriptome were followed in stems during early development. A large increase in SCW deposition in the period 0-2 weeks after transfer to soil was characterised by a big increase in xylan content, but no change in the frequency of substitution of xylan with glucuronic acid, and increased abundance of putative transcripts for synthesis of SCW cellulose, xylan and lignin. Histochemical staining and immunolabeling revealed that increased deposition of lignin and xylan was associated with xylem, xylem fibre cells and phloem fibre cells. Transcripts orthologous to those encoding xylan synthase components IRX9 and IRX10 and xylan glucuronyl transferase GUX1 in Arabidopsis were co-expressed, and showed the same spatial pattern of expression revealed by in situ hybridisation at four developmental stages, with abundant expression in proto-xylem, xylem fibre and ray parenchyma cells and some expression in phloem fibre cells. The results show a close similarity with SCW development in Populus species, but also give novel information on the relationship between spatial and temporal variation in xylan-related transcripts and xylan composition.


Assuntos
Parede Celular/genética , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Salix/crescimento & desenvolvimento , Salix/genética , Celulose/metabolismo , Hibridização In Situ , Lignina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salix/citologia , Xilanos/metabolismo
15.
Ann Bot ; 113(4): 607-15, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24344140

RESUMO

BACKGROUND AND AIMS: The ω-gliadin storage proteins of wheat are of interest in relation to their impact on grain processing properties and their role in food allergy, particularly the ω-5 sub-group and wheat-dependent exercise-induced anaphylaxis. The ω-gliadins are also known to be responsive to nitrogen application. This study therefore compares the effects of cultivar and nitrogen availability on the synthesis and deposition of ω-gliadins in wheat grown under field conditions in the UK, including temporal and spatial analyses at the protein and transcript levels. METHODS: SDS-PAGE, western blotting and N-terminal amino acid sequencing were used to compare the patterns of ω-gliadin components in mature grain of six British wheat (Triticum aestivum) cultivars and their accumulation during the development of grain grown in field plots with varying nitrogen supply. Changes in gene expression during development were determined using real-time reverse transcription-PCR (RT-PCR). Spatial patterns of gene expression and protein accumulation were determined by in situ hybridization and immunofluorescence microscopy, respectively. KEY RESULTS: Two patterns of ω-gliadins were identified in the six cultivars, including both monomeric 'gliadin' proteins and subunits present in polymeric 'glutenin' fractions. Increasing the level of nitrogen fertilizer in field plots resulted in increased expression of ω-gliadin transcripts and increased proportions of ω-5 gliadins. Nitrogen supply also affected the spatial patterns of ω-gliadin synthesis and deposition, which were differentially increased in the outer layers of the starchy endosperm with high levels of nitrogen. CONCLUSIONS: Wheat ω-gliadins vary in amount and composition between cultivars, and in their response to nitrogen supply. Their spatial distribution is also affected by nitrogen supply, being most highly concentrated in the sub-aleurone cells of the starchy endosperm under higher nitrogen availability.


Assuntos
Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Triticum/metabolismo , Anafilaxia , Grão Comestível/citologia , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Endosperma/citologia , Endosperma/efeitos dos fármacos , Endosperma/metabolismo , Gliadina/metabolismo , Humanos , Hibridização In Situ , Nitrogênio/farmacologia , Especificidade de Órgãos , Amido/metabolismo , Triticum/citologia , Triticum/efeitos dos fármacos
16.
J Exp Bot ; 64(1): 161-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23162123

RESUMO

Six wheat cultivars were grown at Rothamsted (UK) with three levels of nitrogen fertilizer (100, 200 and 350 kg N/ha) in 2009 and 2010. Gene expression in developing caryopses at 21 days post-anthesis (DPA) was profiled using the Affymetrix Wheat GeneChip. Four of 105 transcripts which were significantly upregulated by nitrogen level were annotated as γ-3 hordein and the identification of corresponding expressed sequence tags showed that they differed in sequence from previously described (typical) γ-gliadins and represented a novel form of γ-gliadin. Real-time reverse transcriptase PCR at 14, 21, 28 and 35 DPA revealed that this transcript was most abundant and most responsive to nitrogen at 21 DPA. Four novel γ-gliadin genes were isolated by PCR amplification from wheat cv. Hereward and the related species Aegilops tauschii and Triticum monococcum while three were assembled from the genomic sequence database of wheat cv. Chinese Spring (www.cerealsdb.uk.net). Comparison of the deduced amino acid sequences of the seven genes showed that they shared only 44.4-46.0% identity with the sequence of a typical γ-gliadin (accession number EF15018), but 61.8-68.3% identity with the sequence of γ-3 hordein from the wild barley species Hordeum chilense (AY338065). The novel γ-gliadin genes were localized to the group 1 chromosomes (1A, 1B, 1D).


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gliadina/genética , Nitrogênio/farmacologia , Sementes/crescimento & desenvolvimento , Sementes/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Gliadina/química , Gliadina/metabolismo , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetitivas de Aminoácidos , Sementes/efeitos dos fármacos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Triticum/efeitos dos fármacos
17.
Plant Biotechnol J ; 7(5): 401-10, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19490503

RESUMO

A novel methodology is described in which transcriptomics is combined with the measurement of bread-making quality and other agronomic traits for wheat genotypes grown in different environments (wet and cool or hot and dry conditions) to identify transcripts associated with these traits. Seven doubled haploid lines from the Spark x Rialto mapping population were selected to be matched for development and known alleles affecting quality. These were grown in polytunnels with different environments applied 14 days post-anthesis, and the whole experiment was repeated over 2 years. Transcriptomics using the wheat Affymetrix chip was carried out on whole caryopsis samples at two stages during grain filling. Transcript abundance was correlated with the traits for approximately 400 transcripts. About 30 of these were selected as being of most interest, and markers were derived from them and mapped using the population. Expression was identified as being under cis control for 11 of these and under trans control for 18. These transcripts are candidates for involvement in the biological processes which underlie genotypic variation in these traits.


Assuntos
Perfilação da Expressão Gênica/métodos , Característica Quantitativa Herdável , Sementes/genética , Triticum/genética , Produtos Agrícolas/genética , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Haploidia , RNA de Plantas/genética
18.
BMC Genomics ; 9: 121, 2008 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-18325108

RESUMO

BACKGROUND: Hexaploid wheat is one of the most important cereal crops for human nutrition. Molecular understanding of the biology of the developing grain will assist the improvement of yield and quality traits for different environments. High quality transcriptomics is a powerful method to increase this understanding. RESULTS: The transcriptome of developing caryopses from hexaploid wheat (Triticum aestivum, cv. Hereward) was determined using Affymetrix wheat GeneChip oligonucleotide arrays which have probes for 55,052 transcripts. Of these, 14,550 showed significant differential regulation in the period between 6 and 42 days after anthesis (daa). Large changes in transcript abundance were observed which were categorised into distinct phases of differentiation (6-10 daa), grain fill (12-21 daa) and desiccation/maturation (28-42 daa) and were associated with specific tissues and processes. A similar experiment on developing caryopses grown with dry and/or hot environmental treatments was also analysed, using the profiles established in the first experiment to show that most environmental treatment effects on transcription were due to acceleration of development, but that a few transcripts were specifically affected. Transcript abundance profiles in both experiments for nine selected known and putative wheat transcription factors were independently confirmed by real time RT-PCR. These expression profiles confirm or extend our knowledge of the roles of the known transcription factors and suggest roles for the unknown ones. CONCLUSION: This transcriptome data will provide a valuable resource for molecular studies on wheat grain. It has been demonstrated how it can be used to distinguish general developmental shifts from specific effects of treatments on gene expression and to diagnose the probable tissue specificity and role of transcription factors.


Assuntos
Perfilação da Expressão Gênica/métodos , Poliploidia , Sementes/genética , Triticum/genética , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
19.
Theor Appl Genet ; 111(6): 1183-90, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16177903

RESUMO

Four genes encoding novel 1Dx-type high-molecular weight (HMW) subunits were amplified by polymerase chain reaction, two each from Aegilops tauschii and bread wheat Triticum aestivum. The two subunits from Ae. tauschii (1Dx2.1(t) and 1Dx2(t)) were both very similar in sequence to subunit 1Dx2 from bread wheat. In contrast, the two novel bread wheat subunits (1Dx2.2 and 1Dx2.2*) differed from subunit 1Dx2 in having different internally duplicated regions (of 132 and 186 amino acid, respectively) within their repetitive domains. These duplicated sequences were located adjacent to the regions from which they had been duplicated and had complete intact repeat motifs at each end. The implications of these results for HMW subunit evolution and wheat quality improvement are discussed.


Assuntos
Evolução Molecular , Expressão Gênica , Genoma de Planta/genética , Glutens/genética , Subunidades Proteicas/genética , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Componentes do Gene , Duplicação Gênica , Glutens/metabolismo , Dados de Sequência Molecular , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...