Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 866: 161453, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36626987

RESUMO

Thermal plasma activation of CH4-CO2 reforming (CRM) to syngas under non-catalytic conditions is an efficient and clean technology for the large-scale utilization of hydrocarbon resources and the conversion of greenhouse gases. This study investigates the equilibrium state and transformation mechanism of a CRM reaction system activated by thermal plasma through experimental, thermodynamic, and kinetic analyses. The experimental results illustrated that the CO2 conversion rate and H2 selectivity showed a downward trend with an increase in the CO2/CH4 molar ratio, whereas the CH4 conversion rate and CO selectivity showed the opposite trend. When CO2/CH4 molar ratio was 6/4, the selectivity for CO and H2 increased to 87.0 % and 80.8 %, respectively. Excess CO2 promotes the partial oxidation of CH4 to eliminate carbon deposition, resulting in an H2/CO molar ratio value closer to 1. Thermodynamic results show that the thermal-plasma-initiated CRM reaction can reach thermodynamic equilibrium more easily than the conventional catalyzed reactions, achieving much higher feedstock gas conversion without carbon deposition. The kinetic results obtained from the PSR model revealed that CH4 and CO2 were cleaved to form free radicals at the instant of contact with the plasma flame. O, H, and other particles generated in the form of free radicals rapidly collided with each other and transformed into CO and H2, accelerating the reaction process. The results presented in this study will help reveal the transformation mechanism of the CRM reaction activated by thermal plasma under non-catalytic conditions and provide a new perspective for studying CRM reactions.

2.
Front Chem ; 7: 746, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781538

RESUMO

In this study, we investigated the structure-absorption relationship of common surface modifiers of chitosan (CTS), polyvinyl acetate (PVA), and titanium dioxide (TiO2) with α-quartz surface using molecular dynamics simulation. And the orientations and combinations derived from structures between modified α-quartz and ZSM-5 crystallites were also investigated. The results show that PVA is a non-linear organic macromolecule with a large amount of hydroxyl groups on its surface, which easily adhere to the surface of the substrate and agglomerate. CTS is a straight-chain structure containing a large number of hydroxyl and amino groups, which easily accumulate and spread on the surface of the substrate. TiO2 not only forms hydrogen bonds and complexes with the substrate but also interacts with each other to form a dense modifier layer. We observed that a large number of stable Ti-O-Si chemical bonds formed between the modified layer of inorganic small-molecule TiO2 and the surface of α-quartz, which compacted and stabilized the attached ZSM-5 film. Moreover, the orientation angle of the ZSM-5 nanocrystalline nucleus on the modified α-quartz was computed, which confirmed that the b-axis orientation of the ZSM-5 nanocrystalline nucleus was the highest on the surface of the substrate modified by TiO2. We discussed the influence of the modified temperature of modifiers in the constructed materials, and we have observed the adsorption state differences of TiO2 at different modified temperatures. We also discussed the catalytic properties of the materials prepared by the corresponding methods in conversion of methanol-to-aromatics (MTA) reaction. These results agree with our previous experimental data. By employing molecular dynamics simulation, we have obtained more precise conclusive information of the b-oriented growth of ZSM-5 crystallites, which highly depends on the surface modifiers.

3.
Front Chem ; 7: 636, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620429

RESUMO

b-oriented ZSM-5 zeolite film was synthesized on the macropore α-quartz substrate modified with titanium dioxide (TiO2), polyvinyl acetate (PVA), and chitosan (CTS) by hydrothermal crystallization. By comparing the binding energy and b-oriented angle of zeolite film on each modified α-quartz substrate, the orientations, and combinations derived from structure-adsorption relationship were investigated with Material Studio simulation. Furthermore, the effects of calcination temperature and ultraviolet (UV) irradiation time on the surface structure and adsorption activity of TiO2 coating were studied. The increase adsorption potential energy and the formation of Ti-O-Si bind between zeolite crystal phase and substrate facilitate the continuous and uniform zeolite film growth. The TiO2 interlayer with anatase phase after UV irradiation presents a smooth surface with high Ti-OH density, consequently to high selectivity of b-orientation growth for the ZSM-5 crystals. Compared with the traditional ZSM-5, the higher stability has been exhibited with b-oriented ZSM-5 film /TiO2/α-quartz in the MTA reaction, and the methanol conversion and BTX selectivity remained higher than 90 and 70%, after 6 h reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...