Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275748

RESUMO

BackgroundThere is continuing uncertainty regarding the longevity of immunological responses to both SARS-CoV-2 natural infection and COVID-19 vaccines. MethodsWe analysed data from two serological cohorts in Singapore among residents of a COVID-19 affected migrant worker dormitory between May-July 2020, and among mRNA COVID-19 vaccine recipients between May 2021 and January 2022. We compared SARS-CoV-2 neutralising antibody levels by age group, sex, presence of pre-existing medical conditions, type of mRNA vaccine received and number of doses received. We investigated the effect of time since infection or vaccination on antibody levels in naturally infected individuals and two- and three-dose vaccinees. ResultsAfter two vaccine doses, neutralising antibody responses were higher in Spikevax (Moderna) recipients, females, younger individuals and those with no underlying medical conditions. However, antibody levels waned to similar levels in all groups over time. A third dose boosted these to similarly high levels in all groups. Waning was apparent among two-dose but not three-dose recipients over a period of six months. Both two and three-dose vaccine recipients showed consistently higher neutralising antibody levels compared with naturally infected individuals over the 12-week period following infection or vaccination. ConclusionsOur findings support the broad use of booster doses to improve population protection from COVID-19. However, recent increases in transmission of new SARS-CoV-2 variants, even in the presence of high levels of neutralising antibody in a highly vaccinated population, point to vaccine breakthrough as an important mechanism for maintaining SARS-CoV-2 circulation and indicate the need for variant-specific or universal COVID-19 vaccines. SummaryYounger individuals, females and those with no pre-existing conditions have higher neutralising antibody levels after two doses of COVID-19 mRNA vaccine. Subsequently these wane to levels seen in other groups. A booster dose promotes similarly high levels in all groups.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261295

RESUMO

ObjectivesHighly effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed but variants of concerns (VOCs) with mutations in the spike protein are worrisome, especially B.1.617.2 (Delta) which has rapidly spread across the world. We aim to study if vaccination alters virological and serological kinetics in breakthrough infections. MethodsWe conducted a multi-centre retrospective cohort study of patients in Singapore who had received a licensed mRNA vaccine and been admitted to hospital with B.1.617.2 SARS-CoV-2 infection. We compared the clinical features, virological and serological kinetics (anti-nucleocapsid, anti-spike and surrogate virus neutralization titres) between fully vaccinated and unvaccinated individuals. ResultsOf 218 individuals with B.1.617.2 infection, 84 had received a mRNA vaccine of which 71 were fully vaccinated, 130 were unvaccinated and 4 received a non-mRNA. Despite significantly older age in the vaccine breakthrough group, the odds of severe COVID-19 requiring oxygen supplementation was significantly lower following vaccination (adjusted odds ratio 0.07 95%CI: 0.015-0.335, p=0.001). PCR cycle threshold (Ct) values were similar between both vaccinated and unvaccinated groups at diagnosis, but viral loads decreased faster in vaccinated individuals. Early, robust boosting of anti-spike protein antibodies was observed in vaccinated patients, however, these titers were significantly lower against B.1.617.2 as compared with the wildtype vaccine strain. ConclusionThe mRNA vaccines are highly effective at preventing symptomatic and severe COVID-19 associated with B.1.617.2 infection. Vaccination is associated with faster decline in viral RNA load and a robust serological response. Vaccination remains a key strategy for control of COVID-19 pandemic.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-450293

RESUMO

BackgroundAntibodies and T cells cooperate to control virus infections. The definition of the correlates of protection necessary to manage the COVID-19 pandemic, require both immune parameters but the complexity of traditional tests limits virus-specific T cell measurements. MethodsWe test the sensitivity and performance of a simple and rapid SARS-CoV-2 Spike-specific T cell test based on stimulation of whole blood with peptides covering the SARS-CoV-2 Spike protein followed by cytokine (IFN-{gamma}, IL-2) measurement in different cohorts including BNT162b2 vaccinated (n=112; 201 samples), convalescent asymptomatic (n=62; 62 samples) and symptomatic (n=68; 115 samples) COVID-19 patients and SARS-CoV-1 convalescent individuals (n=12; 12 samples). ResultsThe sensitivity of the rapid cytokine whole blood test equates traditional methods of T cell analysis (ELISPOT, Activation Induced Markers). Utilizing this test we observed that Spike-specific T cells in vaccinated preferentially target the S2 region of Spike and that their mean magnitude is similar between them and SARS-CoV-2 convalescents at 3 months after vaccine or virus priming respectively. However, a wide heterogeneity of Spike-specific T cell magnitude characterizes the individual responses irrespective of the time of analysis. No correlation between neutralizing antibody levels and Spike-specific T cell magnitude were found. ConclusionsRapid measurement of cytokine production in whole blood after peptide activation revealed a wide dynamic range of Spike-specific T cell response after vaccination that cannot be predicted from neutralizing antibody quantities. Both Spike-specific humoral and cellular immunity should be tested after vaccination to define the correlates of protection necessary to evaluate current vaccine strategies.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-399139

RESUMO

The efficacy of virus-specific T cells in clearing pathogens involves a fine balance between their antiviral and inflammatory features. SARS-CoV-2-specific T cells in individuals who clear SARS-CoV-2 infection without symptoms or disease could reveal non-pathological yet protective characteristics. We therefore compared the quantity and function of SARS-CoV-2-specific T cells in a cohort of asymptomatic individuals (n=85) with that of symptomatic COVID-19 patients (n=76), at different time points after antibody seroconversion. We quantified T cells reactive to structural proteins (M, NP and Spike) using ELISpot assays, and measured the magnitude of cytokine secretion (IL-2, IFN-{gamma}, IL-4, IL-6, IL-1{beta}, TNF- and IL-10) in whole blood following T cell activation with SARS-CoV-2 peptide pools as a functional readout. Frequencies of T cells specific for the different SARS-CoV-2 proteins in the early phases of recovery were similar between asymptomatic and symptomatic individuals. However, we detected an increased IFN-{gamma} and IL-2 production in asymptomatic compared to symptomatic individuals after activation of SARS-CoV-2-specific T cells in blood. This was associated with a proportional secretion of IL-10 and pro-inflammatory cytokines (IL-6, TNF- and IL-1{beta}) only in asymptomatic infection, while a disproportionate secretion of inflammatory cytokines was triggered by SARS-CoV-2-specific T cell activation in symptomatic individuals. Thus, asymptomatic SARS-CoV-2 infected individuals are not characterized by a weak antiviral immunity; on the contrary, they mount a robust and highly functional virus-specific cellular immune response. Their ability to induce a proportionate production of IL-10 might help to reduce inflammatory events during viral clearance.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-115832

RESUMO

Memory T cells induced by previous infections can influence the course of new viral infections. Little is known about the pattern of SARS-CoV-2 specific pre-existing memory T cells in human. Here, we first studied T cell responses to structural (nucleocapsid protein, NP) and non-structural (NSP-7 and NSP13 of ORF1) regions of SARS-CoV-2 in convalescent from COVID-19 (n=24). In all of them we demonstrated the presence of CD4 and CD8 T cells recognizing multiple regions of the NP protein. We then show that SARS-recovered patients (n=23), 17 years after the 2003 outbreak, still possess long-lasting memory T cells reactive to SARS-NP, which displayed robust cross-reactivity to SARS-CoV-2 NP. Surprisingly, we observed a differential pattern of SARS-CoV-2 specific T cell immunodominance in individuals with no history of SARS, COVID-19 or contact with SARS/COVID-19 patients (n=18). Half of them (9/18) possess T cells targeting the ORF-1 coded proteins NSP7 and 13, which were rarely detected in COVID-19- and SARS-recovered patients. Epitope characterization of NSP7-specific T cells showed recognition of protein fragments with low homology to "common cold" human coronaviruses but conserved among animal betacoranaviruses. Thus, infection with betacoronaviruses induces strong and long-lasting T cell immunity to the structural protein NP. Understanding how pre-existing ORF-1-specific T cells present in the general population impact susceptibility and pathogenesis of SARS-CoV-2 infection is of paramount importance for the management of the current COVID-19 pandemic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...