Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Trop Biomed ; 40(2): 208-219, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37650409

RESUMO

Timely and rapid diagnosis is crucial for faster and proper malaria treatment planning. Microscopic examination is the gold standard for malaria diagnosis, where hundreds of millions of blood films are examined annually. However, this method's effectiveness depends on the trained microscopist's skills. With the increasing interest in applying deep learning in malaria diagnosis, this study aims to determine the most suitable deep-learning object detection architecture and their applicability to detect and distinguish red blood cells as either malaria-infected or non-infected cells. The object detectors Yolov4, Faster R-CNN, and SSD 300 are trained with images infected by all five malaria parasites and from four stages of infection with 80/20 train and test data partition. The performance of object detectors is evaluated, and hyperparameters are optimized to select the best-performing model. The best-performing model was also assessed with an independent dataset to verify the models' ability to generalize in different domains. The results show that upon training, the Yolov4 model achieves a precision of 83%, recall of 95%, F1-score of 89%, and mean average precision of 93.87% at a threshold of 0.5. Conclusively, Yolov4 can act as an alternative in detecting the infected cells from whole thin blood smear images. Object detectors can complement a deep learning classification model in detecting infected cells since they eliminate the need to train on single-cell images and have been demonstrated to be more feasible for a different target domain.


Assuntos
Aprendizado Profundo , Malária , Humanos , Eritrócitos , Malária/diagnóstico
2.
Tropical Biomedicine ; : 208-219, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1006796

RESUMO

@#Timely and rapid diagnosis is crucial for faster and proper malaria treatment planning. Microscopic examination is the gold standard for malaria diagnosis, where hundreds of millions of blood films are examined annually. However, this method’s effectiveness depends on the trained microscopist’s skills. With the increasing interest in applying deep learning in malaria diagnosis, this study aims to determine the most suitable deep-learning object detection architecture and their applicability to detect and distinguish red blood cells as either malaria-infected or non-infected cells. The object detectors Yolov4, Faster R-CNN, and SSD 300 are trained with images infected by all five malaria parasites and from four stages of infection with 80/20 train and test data partition. The performance of object detectors is evaluated, and hyperparameters are optimized to select the best-performing model. The best-performing model was also assessed with an independent dataset to verify the models’ ability to generalize in different domains. The results show that upon training, the Yolov4 model achieves a precision of 83%, recall of 95%, F1-score of 89%, and mean average precision of 93.87% at a threshold of 0.5. Conclusively, Yolov4 can act as an alternative in detecting the infected cells from whole thin blood smear images. Object detectors can complement a deep learning classification model in detecting infected cells since they eliminate the need to train on single-cell images and have been demonstrated to be more feasible for a different target domain.

3.
Med J Malaysia ; 71(2): 66-8, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27326944

RESUMO

Zika virus (ZIKV) has re-emerged to cause explosive epidemics in the Pacific and Latin America, and appears to be associated with severe neurological complications including microcephaly in babies. ZIKV is transmitted to humans by Aedes mosquitoes, principally Ae. aegypti, and there is historical evidence of ZIKV circulation in Southeast Asia. It is therefore clear that Malaysia is at risk of similar outbreaks. Local and international guidelines are available for surveillance, diagnostics, and management of exposed and infected individuals. ZIKV is the latest arbovirus to have spread globally beyond its initial restricted niche, and is unlikely to be the last. Innovative new methods for surveillance and control of vectors are needed to target mosquito-borne diseases as a whole.


Assuntos
Infecção por Zika virus/epidemiologia , Zika virus/patogenicidade , Aedes , Animais , Humanos , Malásia/epidemiologia , Mosquitos Vetores , Infecção por Zika virus/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...