Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ibrain ; 9(1): 3-12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37786523

RESUMO

This article aims to detect the effect of SAM domain, SH3 domain, and nuclear localization signal 1 (SAMSN1) in neonatal rats with neurological dysfunction induced by hypoxia and ischemia (HI). The HI model was created using 7-day postnatal rats. Zea-longa score was utilized to validate the neurological injury after HI. Then, the differentially expressed genes (DEGs) were detected by gene sequencing and bioinformatics analysis methods. The oxygen and glucose deprivation (OGD) models were established in the SY5Y cells and fetal human cortical neurons. In addition, SAMSN1-small interfering RNA, methyl thiazolyl tetrazolium assay, and cell growth curve were employed to evaluate the cell viability variation. Obviously, Zea-longa scores increased in rats with HI insult. Subsequently, SAMSN1 was screened out, and it was found that SAMSN1 was strikingly upregulated in SY5Y cells and fetal neurons post-OGD. Interestingly, we found that SAMSN1 silencing could markedly enhance cell viability and cell growth after OGD. These data suggested that downregulation of SAMSN1 may exert a neuroprotective effect on damaged neurons after HI by improving cell viability and cell survival, which provides a potential theoretical basis for clinical trials in the future to treat neonatal hypoxic-ischemic encephalopathy.

2.
Ibrain ; 8(3): 314-323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37786734

RESUMO

The objective of the study is to investigate the brain development and atrophy of Diannan small-ear pigs in different ages using magnetic resonance imaging (MRI). A total of 12 Diannan small-ear pigs were included and divided into the young group, adult group, and middle-and-old age (M&O) group according to their age. The brain structure of pigs was scanned using MRI, and the brain data obtained were statistically analyzed by signal conversion and image reconstruction. Compared with the young group, the signals of most brain structures in the adult group and M&O group were significantly decreased (p < 0.05). Compared with the adult group, the signal intensity of the right caudate nucleus and the right lateral ventricle in the M&O group was significantly increased, while the signal intensity of other regions was almost significantly decreased (p < 0.05). Compared with the young group, both adult and M&O groups had some degree of brain atrophy. Brain atrophy in the precuneus and the inferior temporal gyrus was more predominant in the M&O group in comparison with the adult group. The present study demonstrated that the brain signal of Diannan small-ear pigs gradually diminished with age, while the degree of brain atrophy was the opposite, providing the basic data on the brain of Diannan small-ear pigs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...