Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1320672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322166

RESUMO

In an effort to help reduce the costs of fluorescence microscopy and expand the use of this valuable technique, we developed a low-cost platform capable of visualising and analysing the spatio-temporal dynamics of intracellular Ca2+ signalling in astrocytes. The created platform, consisting of a specially adapted fluorescence microscope and a data analysis procedure performed with Imagej Fiji software and custom scripts, allowed us to detect relative changes of intracellular Ca2+ ions in astrocytes. To demonstrate the usefulness of the workflow, we applied the methodology to several in vitro astrocyte preparations, specifically immortalised human astrocyte cells and wild-type mouse cells. To demonstrate the reliability of the procedure, analyses were conducted by stimulating astrocyte activity with the agonist dihydroxyphenylglycine (DHPG), alone or in the presence of the antagonist 2-methyl-6-phenylethyl-pyridine (MPEP).

2.
J Phys Chem Lett ; 9(15): 4367-4372, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30024172

RESUMO

We combine Brillouin neutron scattering measurements with recent inelastic X-ray scattering [ Zhernenkov et al. Nat. Commun. 2016 , 7 , 11575 ] to propose a model for the collective dynamics of phospholipid bilayers. Neutron and X-ray spectra were fitted by the model response function associated with the Hamiltonian of an interacting-phonon system. This approach allows for a comprehensive and unprecedented picture of the vibrational collective features of phospholipids. At low wavevectors Q, the dispersion relations can be interpreted in terms of two acoustic-like modes, one longitudinal and one transverse, plus a dispersionless optic-like mode. The transverse mode of the liquid phase shows a phonon gap that can be linked to a passive transport mechanism through membranes, an interpretation that was proposed in Zhernenkov et al. At higher Q values, the interaction of the longitudinal acoustic excitation with the dispersionless mode gives rise to a pattern that is consistent with avoided-crossing behavior. Evidence is found for a slow- to fast-sound transition, similar to bulk water and other biomolecules.


Assuntos
Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Modelos Químicos , Fônons , Luz , Difração de Nêutrons , Espalhamento de Radiação , Estatística como Assunto , Raios X
3.
Colloids Surf B Biointerfaces ; 170: 609-616, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29975909

RESUMO

Interactions of charged nanoparticles with model bio-membranes provide important insights about the soft interaction involved and the physico-chemical parameters that influence lipid bilayers stability, thus providing key features of their cytotoxicity effects onto cellular membranes. With this aim, the self-assembly processes between polyamidoamine dendrimers (generation G = 2.0 and G = 4.0) and dipalmitoylphosphatidylcholine (DPPC) lipids were investigated by means of Zeta potential analysis, x-rays, Raman and quasielastic light scattering experiments. Raman scattering data evidenced that dendrimers penetration produce a perturbation of the DPPC vesicles alkyl chains. A linear increase of liposome zeta-potential with increasing PAMAM concentration evidenced that only a fraction of the dendrimers effective charge contributes to the expression of the charge at the surface of the DPPC liposome. The linear region of the zeta-potential extends toward higher PAMAM concentrations as the dendrimer generation decreases from G = 4.0 to G = 2.0. Further increase in PAMAM concentration, outside of the linear region, causes a perturbation of the bilayer characterized by the loss in multilamellar correlation and the increase of DPPC liposome hydrodynamic radius. The findings of our investigation help to rationalize the effect of nanoparticles electrostatic interaction within lipid vesicles as well as to provide important insights about the perturbation of lipid bilayers membrane induced by nanoparticles inclusion.


Assuntos
Dendrímeros/química , Bicamadas Lipídicas/química , Lipídeos/química , Nanopartículas/química , Tamanho da Partícula , Propriedades de Superfície
4.
J Colloid Interface Sci ; 517: 221-229, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29428810

RESUMO

HYPOTHESIS: The thermoreversible gel-like behavior of pluronics can be affected by the presence of drugs or cosolvents. So far, the effects of polysaccharides and of clays singularly added on a pluronic water dispersion were investigated and the gelation and viscoelastic properties tuned by properly varying the concentration of the additives. The combined addition of chitosan and montmorillonite opens the possibility to join the properties of the single constituents to formulate bio-based temperature-sensitive vehicles. EXPERIMENTS: Chitosan, montmorillonite and chitosan-montmorillonite nanocomposites were added on a concentrated pluronic F127 aqueous solution. The pluronic-based systems were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), rheology and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The gelation and micellization behaviors of pluronic were compared to those of the pluronic-based composites and analyzed in terms of the different elasticity of the investigated samples. Then, FTIR-ATR spectroscopy was applied to analyze different vibrational modes in order to evidence differences in the conformational arrangements of the micelles. FINDINGS: The experiments evidenced that the chitosan/clay nanocomposites have a destructuring effect on the micellar arrangements of pluronic and that the chaotropic effect by chitosan dominates over the ordering effect by the clay.

5.
J Phys Chem B ; 121(6): 1204-1210, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28118017

RESUMO

Fast thermal fluctuations and low frequency phonon modes are thought to play a part in the dynamic mechanisms of many important biological functions in cell membranes. Here we report a detailed far-infrared study of the molecular subpicosecond motions of phospholipid bilayers at various hydrations. We show that these systems sustain several low frequency collective modes and deduce that they arise from vibrations of different lipids interacting through intermolecular van der Waals forces. Furthermore, we observe that the low frequency vibrations of lipid membrane have strong similarities with the subpicosecond motions of liquid water and suggest that resonance mechanisms are an important element to the dynamics coupling between membranes and their hydration water.


Assuntos
Bicamadas Lipídicas/química , Fosfolipídeos/química , Simulação de Dinâmica Molecular , Espectrofotometria Infravermelho , Água/química
6.
Biochim Biophys Acta ; 1858(11): 2769-2777, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27521487

RESUMO

In spite of the growing variety of biological applications of dendrimer-based nanocarriers, a major problem of their potential applications in bio-medicine is related to the disruption of lipid bilayers and the cytotoxicity caused by the aggregation processes involved onto cellular membranes. With the aim to study model dendrimer-biomembrane interaction, the self-assembly processes of a mixture of charged polyamidoamine (PAMAM) dendrimers and dipalmitoylphosphatidylcholine (DPPC) lipids were investigated by means of Zeta potential analysis, Raman and x-ray scattering. Zwitterionic DPPC liposomes showed substantially different behaviors during their interaction with negatively charged (generation G=2.5) sodium carboxylate terminated (COO- Na+) dendrimers or positively charged (generation G=3.0) amino terminated (-NH2) dendrimers. More specifically the obtained results evidence the sensitive interactions between dendrimer terminals and lipid molecules at the surface of the liposome, with an enhancement of the liposome surface zeta potential, as well as in the hydrophobic region of the bilayers, where dendrimer penetration produce a perturbation of the hydrophobic alkyl chains of the bilayers. Analysis of the SAXS structure factor with a suitable model for the inter-dendrimers electrostatic potential allows an estimation of an effective charge of 15 ǀeǀ for G=2.5 and 7.6 ǀeǀ for G=3.0 PAMAM dendrimers. Only a fraction (about 1/7) of this charge contributes to the linear increase of liposome zeta-potential with increasing PAMAM/DPPC molar fraction. The findings of our investigation may be applied to rationalize the effect of the nanoparticles electrostatic interaction in solution environments for the design of new drug carriers combining dendrimeric and liposomal technology.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Dendrímeros/química , Portadores de Fármacos , Bicamadas Lipídicas/química , Lipossomos/química , Ácidos Carboxílicos/química , Análise Espectral Raman , Eletricidade Estática , Termodinâmica
7.
J Phys Chem B ; 120(7): 1285-90, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26807655

RESUMO

The effects of hexanol and octanol on the lateral mobility of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) bilayer are investigated by means of pulsed-gradient stimulated-echo NMR spectroscopy. Three distinct diffusions are identified for the DMPC/alcohol systems. They are ascribed to the water, the alcohol, and the lipid. We find that the presence of alcohols promotes the lipid diffusion process both in the liquid and in the interdigitated phases. Furthermore, using the Arrhenius approach, the activation energies are calculated. An explanation in terms of a free volume model, that takes into account also the observed increase of the activation energy in both phases, is proposed. The results obtained here are compared with those presented in our previous work on 1,2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) in order to examine the dependence of the lipid translational diffusion process upon the membrane acyl chain length. A peculiar influence of alcohols on different membranes is found.


Assuntos
Hexanóis/metabolismo , Bicamadas Lipídicas/metabolismo , Octanóis/metabolismo , Fosfatidilcolinas/metabolismo , Difusão , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Bicamadas Lipídicas/química , Fluidez de Membrana , Fosfatidilcolinas/química
8.
J Phys Chem B ; 118(31): 9349-55, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25036819

RESUMO

We have studied the effects of a high concentration of butanol and octanol on the phase behavior and on the lateral mobility of 1,2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) by means of differential scanning calorimetry and pulsed-gradient stimulated-echo (PGSTE) NMR spectroscopy. A lowering of the lipid transition from the gel to the liquid-crystalline state for the membrane-alcohol systems has been observed. NMR measurements reveal three distinct diffusions in the DPPC-alcohol systems, characterized by a high, intermediate, and slow diffusivity, ascribed to the water, the alcohol, and the lipid, respectively. The lipid diffusion process is promoted in the liquid phase while it is hindered in the interdigitated phase due to the presence of alcohols. Furthermore, in the interdigitated phase, lipid lateral diffusion coefficients show a slight temperature dependence. To the best of our knowledge, this is the first time that lateral diffusion coefficients on alcohol with so a long chain, and at low temperatures, are reported. By the Arrhenius plots of the temperature dependence of the diffusion coefficients, we have evaluated the apparent activation energy in both the liquid and in the interdigitated phase. The presence of alcohol increases this value in both phases. An explanation in terms of a free volume model that takes into account also for energy factors is proposed.


Assuntos
Butanóis/química , Octanóis/química , Fosfolipídeos/química , Difusão , Espectroscopia de Ressonância Magnética , Temperatura , Água/química
9.
J Phys Chem B ; 112(13): 3927-30, 2008 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-18324810

RESUMO

By pulsed field gradient nuclear magnetic resonance measurements, we investigated the translational diffusion of water confined in the 200 A diameter pores of a sol-gel silica glass. The experiments, performed as a function of the hydration level, showed an enhancement of the self-diffusion coefficient when the water content corresponds to one or fewer monolayers. An explanation for this occurrence has been given in terms of a two-phase process involving a fast molecular exchange between the liquid and the vapor phase. Moreover, in partially filled pores, the surface water diffusion coefficient was measured, and was 4 times lower than the diffusion of liquid confined water in saturated spaces.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Nanoestruturas/química , Dióxido de Silício/química , Água/química , Difusão , Vidro/química , Porosidade , Propriedades de Superfície
10.
J Phys Chem A ; 110(3): 1190-5, 2006 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-16420024

RESUMO

The vibrational dynamics of water molecules encapsulated in synthetic Na-A and Mg-exchanged A zeolites were studied versus temperature by inelastic neutron scattering (INS) measurements (30-1200 cm(-1)) as a function of the induced ion-exchange percentage by using the indirect geometry tof spectrometer TOSCA at the ISIS pulse neutron facility (RAL, UK). The experimental INS spectra were compared with those of ice Ih to characterize the structural changes induced by confinement on the H2O hydrogen-bonded network. We observed, after increasing the Mg2+ content, a tendency of water molecules to restore the bulklike arrangements together with more hindered dynamics. These results are confirmed by the analysis of the evaluated one-phonon amplitude-weighted proton vibrational density of states aimed, in particular, to follow the evolution of the water molecules librational mode region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...