Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 72, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36726070

RESUMO

BACKGROUND: Conventional crop protection has major drawbacks, such as developing pest and pathogen insensitivity to pesticides and low environmental compatibility. Therefore, alternative crop protection strategies are needed. One promising approach treats crops with chemical compounds that induce the primed state of enhanced defense. However, identifying priming compounds is often tedious as it requires offline sampling and analysis. High throughput screening methods for the analysis of priming-active compounds have great potential to simplify the search for such compounds. One established method to identify priming makes use of parsley cell cultures. This method relies on measurement of fluorescence of furanocoumarins in the final sample. This study demonstrates for the first time the online measurement of furanocoumarins in microtiter plates. As not all plants produce fluorescence molecules as immune response, a signal, which is not restricted to a specific plant is required, to extend online screening methods to other plant cell cultures. It was shown that the breathing activity of primed parsley cell cultures increases, compared to unprimed parsley cell cultures. The breathing activity can by monitored online. Therefore, online identification of priming-inducing compounds by recording breathing activity represents a promising, straight-forward and highly informative approach. However, so far breathing has been recorded in shake flasks which suffer from low throughput. For industrial application we here report a high-throughput, online identification method for identifying priming-inducing chemistry. RESULTS: This study describes the development of a high-throughput screening system that enables identifying and analyzing the impact of defense priming-inducing compounds in microtiter plates. This screening system relies on the breathing activity of parsley cell cultures. The validity of measuring the breathing activity in microtiter plates to drawing conclusions regarding priming-inducing activity was demonstrated. Furthermore, for the first time, the fluorescence of the priming-active reference compound salicylic acid and of furanocoumarins were simultaneously monitored online. Dose and time studies with salicylic acid-treated parsley cell suspensions revealed a wide range of possible addition times and concentrations that cause priming. The online fluorescence measuring method was further confirmed with three additional compounds with known priming-causing activity. CONCLUSIONS: Determining the OTR, fluorescence of the priming-active chemical compound SA and of furanocoumarins in parsley suspension cultures in MTPs by online measurement is a powerful and high-throughput tool to study possible priming compounds. It allows an in-depth screening for priming compounds and a better understanding of the priming process induced by a given substance. Evaluation of priming phenomena via OTR should also be applicable to cell suspensions of other plant species and varieties and allow screening for priming-inducing chemical compounds in intact plants. These online fluorescence methods to measure the breathing activity, furanocoumarin and SA have the potential to accelerate the search for new priming compounds and promote priming as a promising, eco-friendly crop protection strategy.


Assuntos
Furocumarinas , Petroselinum , Técnicas de Cultura de Células/métodos , Ácido Salicílico , Ensaios de Triagem em Larga Escala/métodos
2.
Biotechnol Bioeng ; 116(11): 2983-2995, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31350917

RESUMO

Shake flasks are still the most relevant experimental tool in the development of viscous fermentation processes. The phase number, which defines the onset of the unfavorable out-of-phase (OP) phenomenon in shake flasks, was previously defined via specific power input measurements. In the OP state, the bulk liquid no longer follows the orbital movement of the imposed centrifugal force, which is for example, detrimental to oxygen transfer. In this study, an optical fluorescence technique was used to measure the three-dimensional liquid distribution in shake flasks. Four new optically derived evaluation criteria for the phase transition between the in-phase and OP condition were established: (a) thickness of the liquid film left on the glass wall by the rotating bulk liquid, (b) relative slope of the leading edge of bulk liquid (LB) lines, (c) trend of the angular position of LB, and (d) very high angular position of the leading edge. In contrast to the previously applied power input measurements, the new optical evaluation criteria describe the phase transition in greater detailed. Instead of Ph = 1.26, a less conservative value of Ph = 0.91 is now suggested for the phase transfer, which implies a broader operating window for shake flask cultivations with higher viscosities.


Assuntos
Aceleração , Reatores Biológicos , Modelos Teóricos , Viscosidade
3.
Biochim Biophys Acta Bioenerg ; 1859(10): 1015-1024, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29800548

RESUMO

Maintenance of metabolic redox homeostasis is essential to all life and is a key factor in many biotechnological processes. Changes in the redox state of NAD affect metabolic fluxes, mediate regulation and signal transduction, and thus determine growth and productivity. Here we establish an in vivo monitoring system for the dynamics of the cytosolic NADH/NAD+ ratio in the basidiomycete Ustilago maydis using the ratiometric fluorescent sensor protein Peredox-mCherry. Metabolic redox dynamics were determined in the cytosol of living cells with high time resolution under biotechnologically relevant conditions, i.e. with high cell density and high aeration. Analytical boundary conditions for reliable analysis were determined, and perturbations in C-, N- or O- availability had marked impact on the cytosolic NADH/NAD+ ratio. NAD redox dynamics could be manipulated in lines inducibly expressing a water-forming NADH oxidase as a synthetic reductant sink. The establishment of Peredox-mCherry in U. maydis and the analysis of NAD redox dynamics provides a versatile methodology for the in vivo investigation of cellular metabolism, and contributes fundamental knowledge for rational design and optimization of biocatalysts.

4.
Artigo em Inglês | MEDLINE | ID: mdl-29209508

RESUMO

BACKGROUND: Ustilago maydis is known for its natural potential to produce a broad range of valuable chemicals, such as itaconate, from both industrial carbon waste streams and renewable biomass. Production of itaconate, and many other secondary metabolites, is induced by nitrogen limitation in U. maydis. The clustered genes responsible for itaconate production have recently been identified, enabling the development of new expression tools that are compatible with biotechnological processes. RESULTS: Here we report on the investigation of two of the native promoters, P tad1 and P mtt1 , from the itaconate cluster of U. maydis MB215. For both promoters the specific activation upon nitrogen limitation, which is known to be the trigger for itaconate production in Ustilago, could be demonstrated by gfp expression. The promoters cover a broad range of expression levels, especially when combined with the possibility to create single- and multicopy construct integration events. In addition, these reporter constructs enable a functional characterization of gene induction patterns associated with itaconate production. CONCLUSIONS: The promoters are well suited to induce gene expression in response to nitrogen limitation, coupled to the itaconate production phase, which contributes towards the further improvement of organic acid production with Ustilago.

5.
J Biol Eng ; 11: 20, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28680476

RESUMO

BACKGROUND: Escherichia coli is often used for recombinant protein production. The expression of recombinant proteins negatively affects the microbial growth, thus, a balance between protein expression and biomass formation is preferable to reach high product- and space-time-yield. Already in screening experiments, suboptimal conditions causing too weak or too strong induction must be avoided. High-throughput screening devices such as the BioLector are often applied for screening experiments. The BioLector allows optical online monitoring of each well in a continuously orbitally shaken microtiter plate via scattered light and fluorescence measurements. This technique enables a fast identification of promising clones. However, to determine the expression performance of non-fluorescent products elaborated offline analysis is often required. METHODS: A mathematical method is developed to distinguish between cultures, which are insufficiently, optimally or too strongly induced. Therefore, just the temporal development of the scattered light intensity signal is investigated. It is found that discrimination between the different intensities of induction is possible via principal component analysis. By fitting an extended sigmoidal function to the trajectory of the scattered light over time, two characteristic parameters are found. These are used in an empirical model to predict the expression performance. RESULTS: The method was established for a wide range of culture conditions based on 625 E. coli cultures. Three E. coli host strains (Tuner(DE3), BL21(DE3), and BL21-Gold(DE3)) expressing either flavin-mononucleotide-based fluorescent protein (FbFP) or Cellulase celA2 were investigated. Cultures were conducted in two different types of microtiter plates (48- and 96-wells), in two online measurement devices at four temperatures (28 °C, 30 °C, 34 °C, and 37 °C). More than 95% of the predicted values are in agreement with the offline measured expression performances with a satisfying accuracy of ±30%. CONCLUSIONS: The properties of cultures studied can be represented by only two characteristic parameters (slope at and time of the inflection point) received from fitting an extended sigmoidal function to the respective scattered light trajectory. Based on these two characteristic parameters, predictions of the standardized expression performance are possible and for a first screen elaborated offline analysis can be avoided. To the best of our knowledge, this is the first work presenting a method for the general prediction of expression performance of E. coli based solely on the temporal development of scattered light signals.

6.
J Biotechnol ; 258: 117-125, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28455204

RESUMO

The manipulation of cellular function, such as the regulation of gene expression, is of great interest to many biotechnological applications and often achieved by the addition of small effector molecules. By combining effector molecules with photolabile protecting groups that mask their biological activity until they are activated by light, precise, yet minimally invasive, photocontrol is enabled. However, applications of this trendsetting technology are limited by the small number of established caged compound-based expression systems. Supported by computational chemistry, we used the versatile photolabile chelator DMNP-EDTA, long-established in neurobiology for photolytic Ca2+ release, to control Cu2+ release upon specific UV-A irradiation. This permits light-mediated control over the widely used Cu2+-inducible pCUP1 promoter from S. cerevisiae and thus constitutes the first example of a caged metal ion to regulate recombinant gene expression. We screened our novel DMNP-EDTA-Cu system for best induction time and expression level of eYFP with a high-throughput online monitoring system equipped with an LED array for individual illumination of every single well. Thereby, we realized a minimally invasive, easy-to-control, parallel and automated optical expression regulation via caged Cu2+ allowing temporal and quantitative control as a beneficial alternative to conventional induction via pipetting CuCl2 as effector molecule.


Assuntos
Cobre/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Optogenética/métodos , Saccharomyces cerevisiae/efeitos da radiação , Cálcio/metabolismo , Quelantes/química , Quelantes/metabolismo , Cobre/química , Ácido Edético/análogos & derivados , Ácido Edético/química , Ácido Edético/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
J Biol Eng ; 10: 11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27733867

RESUMO

BACKGROUND: Genetic code expansion has developed into an elegant tool to incorporate unnatural amino acids (uAA) at predefined sites in the protein backbone in response to an amber codon. However, recombinant production and yield of uAA comprising proteins are challenged due to the additional translation machinery required for uAA incorporation. RESULTS: We developed a microtiter plate-based high-throughput monitoring system (HTMS) to study and optimize uAA integration in the model protein enhanced green fluorescence protein (eGFP). Two uAA, propargyl-L-lysine (Plk) and (S)-2-amino-6-((2-azidoethoxy) carbonylamino) hexanoic acid (Alk), were incorporated at the same site into eGFP co-expressing the native PylRS/tRNAPylCUA pair originating from Methanosarcina barkeri in E. coli. The site-specific uAA functionalization was confirmed by LC-MS/MS analysis. uAA-eGFP production and biomass growth in parallelized E. coli cultivations was correlated to (i) uAA concentration and the (ii) time of uAA addition to the expression medium as well as to induction parameters including the (iii) time and (iv) amount of IPTG supplementation. The online measurements of the HTMS were consolidated by end point-detection using standard enzyme-linked immunosorbent procedures. CONCLUSION: The developed HTMS is powerful tool for parallelized and rapid screening. In light of uAA integration, future applications may include parallelized screening of different PylRS/tRNAPylCUA pairs as well as further optimization of culture conditions.

8.
ACS Chem Biol ; 11(10): 2915-2922, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27570879

RESUMO

Light-mediated gene expression enables the noninvasive regulation of cellular functions. Apart from their classical application of regulating single cells with high spatiotemporal resolution, we highlight the potential of light-mediated gene expression for biotechnological issues. Here, we demonstrate the first light-mediated gene regulation in Saccharomyces cerevisiae using the repressible pMET17 promoter and the photolabile NVOC methionine that releases methionine upon irradiation with UVA light. In this system, the expression can be repressed upon irradiation and is reactivated due to consumption of methionine. The photolytic release allows precise control over the methionine concentration and therefore over the repression duration. Using this light regulation mechanism, we were able to apply an in-house constructed 48-well cultivation system which allows parallelized and automated irradiation programs as well as online detection of fluorescence and growth. This system enables screening of multiple combinations of several repression/derepression intervals to realize complex expression programs (e.g., a stepwise increase of temporally constant expression levels, linear expression rates with variable slopes, and accurate control over the expression induction, although we used a repressible promoter.) Thus, we were able to control all general parameters of a gene expression experiment precisely, namely start, pause, and stop at desired time points, as well as the ongoing expression rate. Furthermore, we gained detailed insights into single-cell expression dynamics with spatiotemporal resolution by applying microfluidics cultivation technology combined with fluorescence time-lapse microscopy.


Assuntos
Regulação Enzimológica da Expressão Gênica , Genes Fúngicos , Metionina/metabolismo , Optogenética , Saccharomyces cerevisiae/genética , Fluorescência , Microfluídica , Regiões Promotoras Genéticas , Raios Ultravioleta
9.
Microb Cell Fact ; 15: 63, 2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27107964

RESUMO

BACKGROUND: Inducible expression systems are frequently used for the production of heterologous proteins. Achieving maximum product concentrations requires induction profiling, namely the optimization of induction time and inducer concentration. However, the respective experiments can be very laborious and time-consuming. In this work, a new approach for induction profiling is presented where induction in a microtiter plate based cultivation system (BioLector) is achieved by light using photocaged isopropyl ß-D-1-thiogalactopyranoside (cIPTG). RESULTS: A flavin mononucleotide-based fluorescent reporter protein (FbFP) was expressed using a T7-RNA-polymerase dependent E. coli expression system which required IPTG as inducer. High power UV-A irradiation was directed into a microtiter plate by light-emitting diodes placed above each well of a 48-well plate. Upon UV irradiation, IPTG is released (uncaged) and induces product formation. IPTG uncaging, formation of the fluorescent reporter protein and biomass growth were monitored simultaneously in up to four 48-well microtiter plates in parallel with an in-house constructed BioLector screening system. The amount of released IPTG can be gradually and individually controlled for each well by duration of UV-A exposure, irradiance and concentration of photocaged IPTG added at the start of the cultivation. A comparison of experiments with either optical or conventional IPTG induction shows that product formation and growth are equivalent. Detailed induction profiles revealed that for the strain and conditions used maximum product formation is reached for very early induction times and with just 6-8 s of UV-A irradiation or 60-80 µM IPTG. CONCLUSIONS: Optical induction and online monitoring were successfully combined in a high-throughput screening system and the effect of optical induction with photocaged IPTG was shown to be equivalent to conventional induction with IPTG. In contrast to conventional induction, optical induction is less costly to parallelize, easy to automate, non-invasive and without risk of contamination. Therefore, light-induced gene expression with photocaged IPTG is a highly advantageous method for the efficient optimization of heterologous protein production and has the potential to replace conventional induction with IPTG.


Assuntos
Escherichia coli , Regulação Bacteriana da Expressão Gênica , Ensaios de Triagem em Larga Escala/métodos , Microbiologia Industrial/métodos , Isopropiltiogalactosídeo/farmacologia , Técnicas Bacteriológicas/métodos , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efeitos da radiação , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
Chembiochem ; 17(4): 296-9, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26677142

RESUMO

Controlling cellular functions by light allows simple triggering of biological processes in a non-invasive fashion with high spatiotemporal resolution. In this context, light-regulated gene expression has enormous potential for achieving optogenetic control over almost any cellular process. Here, we report on two novel one-step cleavable photocaged arabinose compounds, which were applied as light-sensitive inducers of transcription in bacteria. Exposure of caged arabinose to UV-A light resulted in rapid activation of protein production, as demonstrated for GFP and the complete violacein biosynthetic pathway. Moreover, single-cell analysis revealed that intrinsic heterogeneity of arabinose-mediated induction of gene expression was overcome when using photocaged arabinose. We have thus established a novel phototrigger for synthetic bio(techno)logy applications that enables precise and homogeneous control of bacterial target gene expression.


Assuntos
Arabinose/metabolismo , Chromobacterium/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Optogenética/métodos , Vias Biossintéticas/efeitos da radiação , Chromobacterium/metabolismo , Chromobacterium/efeitos da radiação , Escherichia coli/metabolismo , Escherichia coli/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Indóis/metabolismo , Família Multigênica/efeitos da radiação , Análise de Célula Única , Raios Ultravioleta
11.
Biotechnol J ; 10(8): 1259-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26014759

RESUMO

In microtiter plates, conventional online monitoring of biomass concentration based on optical measurements is limited to transparent media: It also cannot differentiate between dead or viable biomass or suspended particles. To address this limitation, this study introduces and validates a new online monitoring setup based on impedance spectroscopy for detecting only viable biomass in 48- and 96-well microtiter plates. The setup was first validated electronically and characterized by determining the cell constants of the measuring geometry. Defined cell suspensions of Ustilago maydis, Hansenula polymorpha, Escherichia coli and Bacillus licheniformis were characterized to find, among other parameters, the most suitable frequency range and the characteristic frequency of ß-dispersion for each organism. Finally, the setup was exemplarily applied to monitor the growth of Hansenula polymorpha online. As reference, three different parallel cultures were performed in established cultivation systems. This new online monitoring setup based on impedance spectroscopy is robust and enables precise measurements of microbial biomass concentration. It is promising for future high-throughput applications.


Assuntos
Biomassa , Reatores Biológicos , Técnicas de Cultura de Células/métodos , Espectroscopia Dielétrica/métodos , Técnicas de Cultura de Células/instrumentação , Espectroscopia Dielétrica/instrumentação , Condutividade Elétrica , Desenho de Equipamento , Fermentação , Ensaios de Triagem em Larga Escala , Pichia/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...