Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 13(616): eabj7843, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34669442

RESUMO

In 1967, two toddlers immunized with a formalin-inactivated vaccine against respiratory syncytial virus (FIRSV) in the United States died from enhanced RSV disease (ERD), a severe form of illness resulting from aberrant priming of the antiviral immune response during vaccination. Up to 80% of immunized children subsequently exposed to wild-type virus were hospitalized. These events hampered RSV vaccine development for decades. Here, we provide a characterization of the clinical, immunopathological, and transcriptional signature of fatal human ERD, outlining evidence for safety evaluation of RSV vaccines and a framework for understanding disease enhancement for pathogens in general.


Assuntos
Doenças Transmissíveis , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Pré-Escolar , Humanos , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sinciciais Respiratórios
2.
PLoS One ; 16(10): e0254985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34597299

RESUMO

BACKGROUND: The goal of this study was to determine if IL-22:Fc would Acute Respiratory Distress Syndrome (ARDS). SUMMARY BACKGROUND DATA: No therapies exist for ARDS and treatment is purely supportive. Interleukin-22 (IL-22) plays an integral component in recovery of the lung from infection. IL-22:Fc is a recombinant protein with a human FC immunoglobulin that increases the half-life of IL-22. STUDY DESIGN: ARDS was induced in C57BL/6 mice with intra-tracheal lipopolysaccharide (LPS) at a dose of 33.3 or 100 ug. In the low-dose LPS group (LDG), IL-22:FC was administered via tail vein injection at 30 minutes (n = 9) and compared to sham (n = 9). In the high-dose LPS group (HDG), IL-22:FC was administered (n = 11) then compared to sham (n = 8). Euthanasia occurred after bronchioalveolar lavage (BAL) on post-injury day 4. RESULTS: In the LDG, IL-22:FC resulted in decreased protein leak (0.15 vs. 0.25 ug/uL, p = 0.02). BAL protein in animals receiving IL-22:Fc in the HDG was not different. For the HDG, animals receiving IL-22:Fc had lower BAL cell counts (539,636 vs 3,147,556 cells/uL, p = 0.02). For the HDG, IL-6 (110.6 vs. 527.1 pg/mL, p = 0.04), TNF-α (5.87 vs. 25.41 pg/mL, p = 0.04), and G-CSF (95.14 vs. 659.6, p = 0.01) levels were lower in the BAL fluid of IL-22:Fc treated animals compared to sham. CONCLUSIONS: IL-22:Fc decreases lung inflammation and lung capillary leak in ARDS. IL-22:Fc may be a novel therapy for ARDS.


Assuntos
Fragmentos Fc das Imunoglobulinas/farmacologia , Interleucinas/farmacologia , Lesão Pulmonar/tratamento farmacológico , Pneumonia/tratamento farmacológico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Feminino , Lipopolissacarídeos/toxicidade , Lesão Pulmonar/patologia , Contagem de Linfócitos , Linfócitos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Pneumonia/patologia , Receptores de Interleucina/metabolismo , Proteínas Recombinantes/farmacologia , Síndrome do Desconforto Respiratório/patologia , Mucosa Respiratória/patologia , Interleucina 22
3.
Sci Immunol ; 6(63): eabf1198, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516780

RESUMO

Tissue-resident memory (TRM) cells are thought to play a role in lung mucosal immunity to pathogens, but strategies to elicit TRM by mucosal vaccines have not yet been fully realized. Here, we formulated a vaccine composed of outer membrane protein (Omp) X from Klebsiella pneumoniae and LTA1 adjuvant that was administered by the intrapulmonary route. This vaccine elicited both TH1 and TH17 cells that shared transcriptional features with cells elicited by heat-killed K. pneumoniae. Antibody responses were required to prevent bacterial dissemination but dispensable for lung-specific immunity. In contrast, lung immunity required CD4+ T cells, STAT3 expression, and IL-17R signaling in fibroblasts. Lung-specific CD4+ T cells from OmpX+LTA1­immunized mice were observed homing to the lung and could mediate protection against infection in an adoptive transfer model. Vaccine-elicited TH17 cells showed reduced plasticity and were resistant to the immunosuppressant FK506 compared with TH1 cells, and TH17 cells conferred protection under conditions of transplant immunosuppression. These data demonstrate a promising vaccine strategy that elicits lung TRM cells and promotes serotype-independent immunity to K. pneumoniae.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Memória Imunológica/imunologia , Klebsiella pneumoniae/imunologia , Pulmão/imunologia , Receptores de Interleucina-17/imunologia , Vacinas/imunologia , Animais , Fibroblastos/imunologia , Imunidade nas Mucosas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia
4.
J Immunol ; 206(4): 766-775, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33431657

RESUMO

Type 17 cytokines have been strongly implicated in mucosal immunity, in part by regulating the production of antimicrobial peptides. Using a mouse model of Citrobacter rodentium infection, which causes colitis, we found that intestinal IL-17RA and IL-17RC were partially required for control of infection in the colon and IL-17 regulates the production of luminal hydrogen peroxide as well as expression of Tnsf13 Reduced Tnfsf13 expression was associated with a profound defect in generating C. rodentium-specific IgA+ Ab-secreting cells. Taken together, intestinal IL-17R signaling plays key roles in controlling invading pathogens, in part by regulating luminal hydrogen peroxide as well as regulating the generation of pathogen-specific IgA+ Ab-secreting cells.


Assuntos
Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Imunoglobulina A Secretora/imunologia , Mucosa Intestinal/imunologia , Oxirredutases/imunologia , Receptores de Interleucina-17/imunologia , Transdução de Sinais/imunologia , Animais , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/genética , Humanos , Peróxido de Hidrogênio/imunologia , Imunoglobulina A Secretora/genética , Camundongos , Camundongos Knockout , Oxirredutases/genética , Receptores de Interleucina-17/genética , Transdução de Sinais/genética
5.
JCI Insight ; 6(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33491669

RESUMO

Pneumocystis is an important opportunistic fungus that causes pneumonia in children and immunocompromised individuals. Recent genomic data show that divergence of major surface glycoproteins may confer speciation and host range selectivity. On the other hand, immune clearance between mice and humans is well correlated. Thus, we hypothesized that humanize mice may provide information about human immune responses involved in controlling Pneumocystis infection. CD34-engrafted huNOG-EXL mice controlled fungal burdens to a greater extent than nonengrafted mice. Moreover, engrafted mice generated fungal-specific IgM. Fungal control was associated with a transcriptional signature that was enriched for genes associated with nonopsonic recognition of trophs (CD209) and asci (CLEC7A). These same genes were downregulated in CD4-deficient mice as well as twins with bare lymphocyte syndrome with Pneumocystis pneumonia.


Assuntos
Pneumonia por Pneumocystis/imunologia , Animais , Anticorpos Antifúngicos/biossíntese , Antígenos CD34/metabolismo , Moléculas de Adesão Celular/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Xenoenxertos , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Especificidade de Hospedeiro/imunologia , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina M/biossíntese , Lectinas Tipo C/genética , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Camundongos Transgênicos , Pneumocystis/imunologia , Pneumocystis/patogenicidade , Pneumonia por Pneumocystis/genética , Pneumonia por Pneumocystis/microbiologia , Receptores de Superfície Celular/genética , Especificidade da Espécie
6.
Am J Respir Cell Mol Biol ; 64(1): 79-88, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991819

RESUMO

Preclinical mouse models that recapitulate some characteristics of coronavirus disease (COVID-19) will facilitate focused study of pathogenesis and virus-host responses. Human agniotensin-converting enzyme 2 (hACE2) serves as an entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect people via binding to envelope spike proteins. Herein we report development and characterization of a rapidly deployable COVID-19 mouse model. C57BL/6J (B6) mice expressing hACE2 in the lung were transduced by oropharyngeal delivery of the recombinant human adenovirus type 5 that expresses hACE2 (Ad5-hACE2). Mice were infected with SARS-CoV-2 at Day 4 after transduction and developed interstitial pneumonia associated with perivascular inflammation, accompanied by significantly higher viral load in lungs at Days 3, 6, and 12 after infection compared with Ad5-empty control group. SARS-CoV-2 was detected in pneumocytes in alveolar septa. Transcriptomic analysis of lungs demonstrated that the infected Ad5-hACE mice had a significant increase in IFN-dependent chemokines Cxcl9 and Cxcl10, and genes associated with effector T-cell populations including Cd3 g, Cd8a, and Gzmb. Pathway analysis showed that several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched in the data set, including cytokine-cytokine receptor interaction, the chemokine signaling pathway, the NOD-like receptor signaling pathway, the measles pathway, and the IL-17 signaling pathway. This response is correlative to clinical response in lungs of patients with COVID-19. These results demonstrate that expression of hACE2 via adenovirus delivery system sensitized the mouse to SARS-CoV-2 infection and resulted in the development of a mild COVID-19 phenotype, highlighting the immune and inflammatory host responses to SARS-CoV-2 infection. This rapidly deployable COVID-19 mouse model is useful for preclinical and pathogenesis studies of COVID-19.


Assuntos
Células Epiteliais Alveolares/imunologia , COVID-19/imunologia , Expressão Gênica , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Adenoviridae/genética , Adenoviridae/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Enzima de Conversão de Angiotensina 2/biossíntese , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , COVID-19/genética , COVID-19/metabolismo , COVID-19/patologia , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Transdução de Sinais/genética , Transdução Genética
7.
JCI Insight ; 5(8)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32213713

RESUMO

Infections due to carbapenem-resistant Klebsiella pneumoniae have emerged as a global threat due to its widespread antimicrobial resistance. Transplant recipients and patients with hematologic malignancies have high mortality rate, suggesting host factors in susceptibility. We developed a model of pulmonary infection using ST258 strain C4, KPC-2 clone, which are predominant K. pneumoniae carbapenemase-producing (KPC-producing) bacteria, and demonstrated that Rag2-/- Il2rg-/- mice - but not WT C57BL/6 or Rag2-/- mice - were susceptible to this opportunistic infection. Using single cell RNA sequencing in infected Rag2-/- mice, we identified distinct clusters of Ifng+ NK cells and Il17a+, Il22+, and inducible T cell costimulatory molecule-positive (ICOS+) group 3 innate lymphoid cells (ILCs) that were critical for host resistance. As solid organ transplantation is a risk factor, we generated a more clinically relevant model using FK506 in WT C57BL/6 mice. We further demonstrated that immunotherapy with recombinant IL-22 treatment ameliorated the ST258 pulmonary infection in both FK506-treated WT mice and Rag2-/- Il2rg-/- mice via hepatic IL-22ra1 signaling. These data support the development of host-directed immunotherapy as an adjunct treatment to new antibiotics.


Assuntos
Resistência Microbiana a Medicamentos/imunologia , Interleucinas/imunologia , Infecções por Klebsiella/imunologia , Subpopulações de Linfócitos/imunologia , Animais , Carbapenêmicos , Imunidade Inata/imunologia , Klebsiella pneumoniae , Camundongos Endogâmicos C57BL , Camundongos Knockout , Interleucina 22
8.
Cell Rep ; 29(8): 2270-2283.e7, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747600

RESUMO

Interleukin (IL)-17 signaling to the intestinal epithelium regulates the intestinal microbiome. Given the reported links between intestinal dysbiosis, bacterial translocation, and liver disease, we hypothesize that intestinal IL-17R signaling plays a critical role in mitigating hepatic inflammation. To test this, we study intestinal epithelium-specific IL-17RA-deficient mice in an immune-driven hepatitis model. At the naive state, these mice exhibit microbiome dysbiosis and increased translocation of bacterial products (CpG DNA), which drives liver IL-18 production. Upon disease induction, absence of enteric IL-17RA signaling exacerbates hepatitis and hepatocyte cell death. IL-18 is necessary for disease exacerbation and is associated with increased activated hepatic lymphocytes based on Ifng and Fasl expression. Thus, intestinal IL-17R regulates translocation of TLR9 ligands and constrains susceptibility to hepatitis. These data connect enteric Th17 signaling and the microbiome in hepatitis, with broader implications on the effects of impaired intestinal immunity and subsequent release of microbial products observed in other extra-intestinal pathologies.


Assuntos
Hepatite/metabolismo , Inflamação/metabolismo , Interleucina-18/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Microbiota/fisiologia , Receptores de Interleucina-17/metabolismo , Animais , Translocação Bacteriana/genética , Translocação Bacteriana/fisiologia , Hepatócitos/metabolismo , Camundongos , Microbiota/genética , Receptor Toll-Like 9/metabolismo
9.
Biol Open ; 8(5)2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31064740

RESUMO

Six2+ cap mesenchyme cells, also called nephron progenitor cells (NPC), are precursors of all epithelial cell types of the nephron, the filtering unit of the kidney. Current evidence indicates that perinatal 'old' NPC have a greater tendency to exit the progenitor niche and differentiate into nascent nephrons than their embryonic 'young' counterpart. Understanding the underpinnings of NPC development may offer insights to rejuvenate old NPC and expand the progenitor pool. Here, we compared the chromatin landscape of young and old NPC and found common features reflecting their shared lineage but also intrinsic differences in chromatin accessibility and enhancer landscape supporting the view that old NPC are epigenetically poised for differentiation. Annotation of open chromatin regions and active enhancers uncovered the transcription factor Bach2 as a potential link between the pro-renewal MAPK/AP1 and pro-differentiation Six2/b-catenin pathways that might be of critical importance in regulation of NPC fate. Our data provide the first glimpse of the dynamic chromatin landscape of NPC and serve as a platform for future studies of the impact of genetic or environmental perturbations on the epigenome of NPC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...