Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Small ; : e2402104, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949416

RESUMO

To meet increasing requirement for innovative energy storage and conversion technology, it is urgent to prepare effective, affordable, and long-term stable oxygen electrocatalysts to replace precious metal-based counterparts. Herein, a two-step pyrolysis strategy is developed for controlled synthesis of Fe2O3 and Mn3O4 anchored on carbon nanotubes/nanosheets (Fe2O3-Mn3O4-CNTs/NSs). The typical catalyst has a high half-wave potential (E1/2 = 0.87 V) for oxygen reduction reaction (ORR), accompanied with a smaller overpotential (η10 = 290 mV) for oxygen evolution reaction (OER), showing substantial improvement in the ORR and OER performances. As well, density functional theory calculations are performed to illustrate the catalytic mechanism, where the in situ generated Fe2O3 directly correlates to the reduced energy barrier, rather than Mn3O4. The Fe2O3-Mn3O4-CNTs/NSs-based Zn-air battery exhibits a high-power density (153 mW cm-2) and satisfyingly long durability (1650 charge/discharge cycles/550 h). This work provides a new reference for preparation of highly reversible oxygen conversion catalysts.

2.
Biomater Adv ; 162: 213919, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38861801

RESUMO

Tumor microenvironment (TME)-responsive chemodynamic therapy (CDT) is severely hindered by insufficient intracellular H2O2 level that seriously deteriorates antitumor efficacy, albeit with its extensively experimental and theoretical research. Herein, we designed atomically dispersed FeCo dual active sites anchored in porous carbon polyhedra (termed FeCo/PCP), followed by loading with glucose oxidase (GOx) and anticancer doxorubicin (DOX), named FeCo/PCP-GOx-DOX, which converted glucose into toxic hydroxyl radicals. The loaded GOx can either decompose glucose to self-supply H2O2 or provide fewer nutrients to feed the tumor cells. The as-prepared nanozyme exhibited the enhanced in vitro cytotoxicity at high glucose by contrast with those at less or even free of glucose, suggesting sufficient accumulation of H2O2 and continual transformation to OH for CDT. Besides, the FeCo/PCP-GOx-DOX can subtly integrate starvation therapy, the FeCo/PCP-initiated CDT, and DOX-inducible chemotherapy (CT), greatly enhancing the therapeutic efficacy than each monotherapy.


Assuntos
Doxorrubicina , Glucose Oxidase , Peróxido de Hidrogênio , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Humanos , Animais , Microambiente Tumoral/efeitos dos fármacos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Glucose/metabolismo , Domínio Catalítico
3.
Small ; : e2402981, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838089

RESUMO

To address the imperative challenge of producing hydrogen in a low-energy consumption electrocatalytic system, this study emphasizes the utilization of thermodynamically favorable biomass oxidation for achieving energy-efficient hydrogen generation. This research integrates ultralow PtO2-loaded flower-like nanosheets (denoted as PtO2@Cu2O/Cu FNs) with Cu0/Cu+ pairs and Pt─O bonds, thereby yielding substantial enhancement in both hydrogen evolution reaction (HER, -0.042 VRHE at 10 mA cm-2) and furfural oxidation reaction (FFOR, 0.09 VRHE at 10 mA cm-2). As validated by DFT calculations, the dual built-in electric field (BIEF) is elucidated as the driving force behind the enhanced activities, in which Pt─O bonds expedite the HER, while Cu+/Cu0 promotes low-potential FFOR. By coupling the FFOR and HER together, the resulting bipolar-hydrogen production system requires a low power input (0.5072 kWh per m3) for producing H2. The system can generate bipolar hydrogen and high value-added furoic acid, significantly enhancing hydrogen production efficiency and concurrently mitigating energy consumption.

4.
Talanta ; 278: 126464, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38936106

RESUMO

Deoxynivalenol (DON), a mycotoxin produced by Fusarium, poses a significant risk to human health and the environment. Therefore, the development of a highly sensitive and accurate detection method is essential to monitor the pollution situation. In response to this imperative, we have devised an advanced split-type photoelectrochemical (PEC) sensor for DON analysis, which leverages self-shedding MOF-nanocarriers to modulate the photoelectric response ability of PEC substrate. The PEC sensing interface was constructed using CdS/MoSe2 heterostructures, while the self-shedding copper peroxide nanodots@ZIF-8 (CPNs@ZIF-8) served as the Cu2+ source for the in-situ ion exchange reaction, which generated a target-related signal reduction. The constructed PEC sensor exhibited a broad linear range of 0.1 pg mL-1 to 500 ng mL-1 with a low detection limit of 0.038 pg mL-1, demonstrating high stability, selectivity, and proactivity. This work not only introduces innovative ideas for the design of photosensitive materials, but also presents novel sensing strategies for detecting various environmental pollutants.

5.
Anal Chem ; 96(21): 8586-8593, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38728058

RESUMO

Nowadays, signal enhancement is imperative to increase sensitivity of advanced ECL devices for expediting their promising applications in clinic. In this work, photodynamic-assisted electrochemiluminescence (PDECL) device was constructed for precision diagnosis of Parkinson, where an advanced emitter was prepared by electrostatically linking 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) with 1-butyl-3-methylimidazole tetrafluoroborate ([BMIm][BF4]). Specifically, protoporphyrin IX (PPIX) can trigger the photodynamic reaction under light irradiation with a wavelength of 450 nm to generate lots of singlet oxygen (1O2), showing a 2.43-fold magnification in the ECL responses. Then, the aptamer (Apt) was assembled on the functional BET-[BMIm] for constructing a "signal off" ECL biosensor. Later on, the PPIX was embedded into the G-quadruplex (G4) of the Apt to magnify the ECL signals for bioanalysis of α-synuclein (α-syn) under light excitation. In the optimized surroundings, the resulting PDECL sensor has a broad linear range of 100.0 aM ∼ 10.0 fM and a low limit of detection (LOD) of 63 aM, coupled by differentiating Parkinson patients from normal individuals according to the receiver operating characteristic (ROC) curve analysis of actual blood samples. Such research holds great promise for synthesis of other advanced luminophores, combined with achieving an early clinical diagnosis.


Assuntos
Compostos de Boro , Técnicas Eletroquímicas , Medições Luminescentes , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/sangue , Compostos de Boro/química , Técnicas Biossensoriais/métodos , alfa-Sinucleína/análise , alfa-Sinucleína/sangue , Protoporfirinas/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção
6.
Angew Chem Int Ed Engl ; : e202407748, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818639

RESUMO

Selective producing ethanol from CO2 electroreduction is highly demanded, yet the competing ethylene generation route is commonly more thermodynamically preferred. Herein, we reported an efficient CO2-to-ethanol conversion (53.5% faradaic efficiency at -0.75 V versus reversible hydrogen electrode (vs. RHE)) over an oxide-derived nanocubic catalyst featured with abundant "embossment-like" structured grain-boundaries. The catalyst also attains a 23.2% energy efficiency to ethanol within a flow cell reactor. In situ spectroscopy and electrochemical analysis identified that these dualphase Cu(I) and Cu(0) sites stabilized by grain-boundaries are very robust over the operating potential window, which maintains a high concentration of co-adsorbed *CO and hydroxyl (*OH) species. Theoretical calculations revealed that the presence of *OHad not only promote the easier dimerization of *CO to form *OCCO (ΔG ~ 0.20 eV) at low overpotentials but also preferentially favor the key *CHCOH intermediate hydrogenation to *CHCHOH (ethanol pathway) while suppressing its dehydration to *CCH (ethylene pathway), which is believed to determine the remarkable ethanol selectivity. Such imperative intermediates associated with the bifurcation pathway were directly distinguished by isotope labelling in situ infrared spectroscopy. Our work promotes the understanding of bifurcating mechanism of CO2ER-to-hydrocarbons more deeply, providing a feasible strategy for the design of efficient ethanol-targeted catalysts.

7.
J Colloid Interface Sci ; 665: 1065-1078, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579389

RESUMO

Reactive oxygen species (ROS)-centered chemodynamic therapy (CDT) holds significant potential for tumor-specific treatment. However, insufficient endogenous H2O2 and extra glutathione within tumor microenvironment (TME) severely deteriorate the CDT's effectiveness. Herein, rich-Zn-Co3O4/N-doped porous carbon (Zn-Co3O4/NC) was fabricated by two-step pyrolysis, and applied to build high-efficiency nano-platform for synergistic cancer therapy upon combination with glucose oxidase (GOx), labeled Zn-Co3O4/NC-GOx for clarity. Specifically, the multiple enzyme-like activities of the Zn-Co3O4/NC were scrutinously investigated, including peroxidase-like activity to convert H2O2 to O2∙-, catalase-like activity to decompose H2O2 into O2, and oxidase-like activity to transform O2 to O2∙-, which achieved the CDT through the catalytic cascade reaction. Simultaneously, GOx reacted with intracellular glucose to produce gluconic acid and H2O2, realizing starvation therapy. In the acidic TME, the Zn-Co3O4/NC-GOx rapidly caused intracellular Zn2+ pool overload and disrupted cellular homeostasis for ion-intervention therapy. Additionally, the Zn-Co3O4/NC exhibited glutathione peroxidase-like activity, which consumed glutathione in tumor cells and reduced the ROS consumption for ferroptosis. The tumor treatments offer some constructive insights into the nanozyme-mediated catalytic medicine, coupled by avoiding the TME limitations.


Assuntos
Cobalto , Peróxido de Hidrogênio , Neoplasias , Óxidos , Humanos , Porosidade , Espécies Reativas de Oxigênio , Glucose Oxidase , Imidazóis , Carbono , Glutationa , Zinco , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
8.
Talanta ; 274: 126034, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604040

RESUMO

As an important prognostic indicator in breast cancer, human epithelial growth factor receptor-2 (HER-2) is of importance for assessing prognosis of breast cancer patients, whose accurate and facile analysis are imperative in clinical diagnosis and treatment. Herein, photoactive Z-scheme UiO-66/CdIn2S4 heterojunction was constructed by a hydrothermal method, whose optical property and photoactivity were critically investigated by a range of techniques, combined by elucidating the interfacial charge transfer mechanism. Meanwhile, PtPdCu nanoflowers (NFs) were fabricated by a simple aqueous wet-chemical method, whose peroxidase (POD)-mimicking catalytic activity was scrutinized by representative tetramethylbenzidine (TMB) oxidation in H2O2 system. Taken together, the UiO-66/CdIn2S4 based photoelectrochemical (PEC) aptasensor was established for quantitative analysis of HER-2, where the detection signals were further magnified through catalytic precipitation reaction towards 4-chloro-1-naphthol (4-CN) oxidation (assisted by the PtPdCu NFs nanozyme). The PEC aptasensor presented a broader linear range within 0.1 pg mL-1-0.1 µg mL-1 and a lower limit of detection of 0.07 pg mL-1. This work developed a new PEC aptasensor for ultrasensitive determination of HER-2, holding substantial promise for clinical diagnostics.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cobre , Técnicas Eletroquímicas , Platina , Receptor ErbB-2 , Receptor ErbB-2/análise , Humanos , Técnicas Eletroquímicas/métodos , Cobre/química , Platina/química , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/análise , Estruturas Metalorgânicas/química , Nanoestruturas/química , Níquel/química , Benzidinas/química , Processos Fotoquímicos , Catálise
9.
Biosens Bioelectron ; 257: 116323, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38669842

RESUMO

Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.


Assuntos
Técnicas Biossensoriais , Ensaios Enzimáticos , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Ensaios Enzimáticos/métodos , Nanopartículas Metálicas/química , Humanos , Corantes Fluorescentes/química , Luminescência , Fluorescência
10.
Biosens Bioelectron ; 257: 116324, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38669844

RESUMO

Exploring efficient photoactive material presents an intriguing opportunity to enhance the analytical performance of photoelectrochemical (PEC) sensor in the environmental analysis. In this work, a sandwich-structured multi-interface Co9S8@ZnIn2S4/CdSe QDs dual Z-Scheme heterojunction, derived from metal-organic framework (MOF), was synthesized as a sensing platform for chlorpyrifos detection, by integrating with enzyme-induced in situ insoluble precipitates strategy. The meticulously designed Co9S8@ZnIn2S4/CdSe QDs exhibited enhanced charge separation efficiency and was proved to be a highly effective sensing platform for the immobilization of biomolecules, attributing to the intrinsic dual Z-Scheme heterojunction and the distinctive hollow structure. The proposed PEC sensing platform combined with enzyme-induced in situ precipitate signal amplification strategy achieved superior performance for sensing of chlorpyrifos (CPF), showing in wide linear range (1.0 pg mL-1-100 ng mL-1), with a limit of detection (0.6 pg mL-1), excellent selectivity, and stability. This work offers valuable insights for the design of novel advanced photoactive materials aimed at detecting environmental pollutants with low level concentration.


Assuntos
Técnicas Biossensoriais , Clorpirifos , Técnicas Eletroquímicas , Limite de Detecção , Estruturas Metalorgânicas , Pontos Quânticos , Clorpirifos/análise , Estruturas Metalorgânicas/química , Técnicas Eletroquímicas/métodos , Pontos Quânticos/química , Compostos de Cádmio/química , Compostos de Selênio/química , Cobalto/química , Inseticidas/análise
11.
Talanta ; 274: 125934, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574533

RESUMO

Nowadays, novel and efficient signal amplification strategy in electrochemiluminescence (ECL) platform is urgently needed to enhance the sensitivity of biosensor. In this work, the dual ECL signal enhancement strategy was constructed by the interactions of Pd nanoparticles attached covalent organic frameworks (Pd NPs@COFs) with tris (bipyridine) ruthenium (RuP) and Exonuclease III (Exo.III) cycle reaction. Within this strategy, the COFs composite was generated from the covalent reaction between 2-nitro-1,4-phenylenediamine (NPD) and trialdehyde phloroglucinol (Tp), and then animated by glutamate (Glu) to attach the Pd NPs. Next, the "signal on" ECL biosensor was constructed by the coordination assembly of thiolation capture DNA (cDNA) onto the Pd NPs@COFs modified electrode. After the aptamer recognition of progesterone (P4) with hairpin DNA 1 (HP1), the Exo. III cycle reaction was initiated with HP2 to generate free DNA, which hybridized with cDNA to form double-stranded DNA (dsDNA). For that, the RuP was embedded into the groove of dsDNA and achieved the ultrasensitive detection of P4 with a lower limit of detection (LOD) down to 0.45 pM, as well as the excellent selectivity and stability. This work expands the COFs-based materials application in ECL signal amplification and valuable DNA cyclic reaction in biochemical testing field.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Exodesoxirribonucleases , Nanopartículas Metálicas , Estruturas Metalorgânicas , Paládio , Progesterona , Nanopartículas Metálicas/química , Estruturas Metalorgânicas/química , Paládio/química , Progesterona/análise , Progesterona/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Limite de Detecção , Medições Luminescentes/métodos , Humanos , DNA/química
12.
J Sep Sci ; 47(5): e2300746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38471966

RESUMO

In this work, monodisperse and nano-porous poly(bismaleimide-co-divinylbenzene) microspheres with large specific surface area (427.6 m2 /g) and rich pore structure were prepared by one-pot self-stable precipitation polymerization of 2,2'-bis[4-(4-maleimidophenoxy) phenyl] propane and divinylbenzene. The prepared poly(bismaleimide-co-divinylbenzene) microspheres were employed as dispersive solid-phase extraction (DSPE) adsorbent for the extraction of triazine herbicides. Under optimized conditions, good linearities were obtained between the peak area and the concentration of triazine herbicides in the range of 1-400 µg/L (R2 ≥ 0.9987) with the limits of detection of 0.12-0.31 µg/L. Triazine herbicides were detected using the described approach in vegetable samples (i.e., cucumber, tomato, and maize) with recoveries of 93.6%-117.3% and relative standard deviations of 0.4%-3.5%. In addition, the recoveries of triazine herbicides remained above 80.7% after being used for nine DSPE cycles, showing excellent reusability of poly(bismaleimide-co-divinylbenzene) microspheres. The adsorption of poly(bismaleimide-co-divinylbenzene) microspheres toward triazine herbicides was a monolayer and chemical adsorption. The adsorption mechanism between triazine herbicides and adsorbents might be a combination of hydrogen bonding, electrostatic interaction, and π-π conjugation. The results confirmed the potential use of the poly(bismaleimide-co-divinylbenzene) microspheres-based DSPE coupled to the high-performance liquid chromatography method for the detection of triazine herbicide residues in vegetable samples.


Assuntos
Herbicidas , Verduras , Compostos de Vinila , Verduras/química , Cromatografia Líquida de Alta Pressão/métodos , Microesferas , Porosidade , Triazinas/análise , Extração em Fase Sólida/métodos , Herbicidas/análise , Limite de Detecção
13.
J Colloid Interface Sci ; 662: 149-159, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340514

RESUMO

Efficient and stable oxygen reduction reaction (ORR) catalysts are essential for constructing reliable energy conversion and storage devices. Herein, we prepared noble metal-free FeCoNiMnV high-entropy alloy supported on nitrogen-doped carbon nanotubes (FeCoNiMnV HEA/N-CNTs) by a one-step pyrolysis at 800 °C, as certificated by a set of characterizations. The graphitization degree of the N-CHTs was optimized by tuning the pyrolysis temperature in the control groups. The resultant catalyst greatly enhanced the ORR characteristics in the alkaline media, showing the positive onset potential (Eonset) of 0.99 V and half-wave potential (E1/2) of 0.85 V. More importantly, the above FeCoNiMnV HEA/N-CNTs assembled Zn-air battery exhibited a greater open-circuit voltage (1.482 V), larger power density (185.12 mW cm-2), and outstanding cycle stability (1698 cycles, 566 h). This study provides some valuable insights on developing sustainable ORR catalysts in Zn-air batteries.

14.
Mikrochim Acta ; 191(3): 139, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38360951

RESUMO

Bisphenol A (BPA), an important endocrine disrupting compound, has infiltrated human daily lives through electronic devices, food containers, and children's toys. Developing of novel BPA assay methods with high sensitivity holds tremendous importance in valuing the pollution state. Here, we constructed an ultrasensitive photoelectrochemical (PEC) aptasensor for BPA determination by regulating photoactivities of CdS/Ni-based metal-organic framework (CdS/Ni-MOF) with [Ru(bpy)2dppz]2+ sensitizer. CdS/Ni-MOF spheres exhibited excellent photocatalytic performance, serving as a potential sensing platform for the construction of target recognition process. [Ru(bpy)2dppz]2+ were embedded into DNA double-stranded structure, functioning as sensitizer for modulating the signal response of the developed PEC aptasensor. The proposed PEC sensor exhibited outstanding analytical performances, including a wide linear range (0.1 to 1000.0 nM), low detection limit (0.026 nM, at 3σ/m), excellent selectivity, and high stability. This work provides a perspective for the design of ideal photosensitive materials and signal amplification strategies and extends their application in environment analysis.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Fenóis , Criança , Humanos , Substâncias Intercalantes , Técnicas Biossensoriais/métodos , Compostos Benzidrílicos , DNA
15.
J Colloid Interface Sci ; 661: 102-112, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38295692

RESUMO

Three-dimensional (3D) hollow carbon is one of advanced nanomaterials widely applied in oxygen reduction reaction (ORR). Herein, iron niobate (FeNb2O6) nanoparticles supported on metal-organic frameworks (MOFs)-derived 3D N-doped interconnected open carbon cages (FeNb2O6/NICC) were prepared by methanol induced assembly and pyrolysis strategy. During the fabrication process, the evaporation of methanol promoted the assembly and cross linkage of ZIF-8, rather than individual particles. The assembled ZIF-8 particles worked as in-situ sacrificial templates, in turn forming hierarchically interconnected open carbon cages after high-temperature pyrolysis. The as-made FeNb2O6/NICC showed a positive onset potential of 1.09 V and a half-wave potential of 0.88 V for the ORR, outperforming commercial Pt/C under the identical conditions. Later on, the as-built Zn-air battery with the FeNb2O6/NICC presented a greater power density of 100.6 mW cm-2 and durable long-cycle stability by operating for 200 h. For preparing 3D hollow carbon materials, this synthesis does not require a tedious removal process of template, which is more convenient than traditional method with silica and polystyrene spheres as templates. This work affords an exceptional example of developing 3D N-doped interconnected hollow carbon composites for energy conversion and storage devices.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123934, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38266603

RESUMO

Excessive use of antithyroid drug methimazole (MMI) in pharmaceutical samples can cause hypothyroidism and symptoms of metabolic decline. Hence, it is urgent to develop rapid, low cost and accurate colorimetric method with peroxidase-like nanozymes for determination of MMI in medical, nutrition and pharmaceutical studies. Herein, Fe single atoms were facilely encapsulated into N, P-codoped carbon nanosheets (Fe SAs/NP-CSs) by a simple pyrolysis strategy, as certified by a series of characterizations. UV-vis absorption spectroscopy was employed to illustrate the high peroxidase-mimicking activity of the resultant Fe SAs/NP-CSs nanozyme through the typical catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation. The catalytic mechanism was scrutionously investigated by the fluorescence spectroscopy and electron paramagnetic resonance (EPR) tests. Additionally, the introduced MMI had the ability to reduce the oxidation of TMB (termed oxTMB) as a peroxidase inhibitor, coupled by fading the blue color. By virtue of the above findings, a visual colorimetric sensor was established for dual detection of methimazole (MMI) with a linear scope of 5-50 mM and a LOD of 1.57 mM, coupled by assay of H2O2 at a linear range of 3-50 mM. According to the irreversible oxidation of the drug, its screening with acceptable results was achieved on the sensing platform even in commercial tablets The Fe SAs/NP-CSs nanozyme holds great potential for clinical diagnosis and drug analysis.


Assuntos
Carbono , Colorimetria , Carbono/química , Colorimetria/métodos , Metimazol , Peróxido de Hidrogênio/análise , Peroxidase/metabolismo , Oxirredutases , Peroxidases , Corantes , Preparações Farmacêuticas
17.
Bioelectrochemistry ; 157: 108639, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38199185

RESUMO

Recently, high-entropy alloys have superior physicochemical properties as compared to conventional alloys for their glamorous "cocktail effect". Nevertheless, they are scarcely applied to electrochemical immunoassays until now. Herein, uniform PtRhMoCoFe high-entropy alloyed nanodendrites (HEANDs) were synthesized by a wet-chemical co-reduction method, where glucose and oleylamine behaved as the co-reducing agents. Then, a series of characterizations were conducted to illustrate the synergistic effect among multiple metals and fascinating structural characteristics of PtRhMoCoFe HEANDs. The obtained high-entropy alloy was adopted to build a electrochemical label-free biosensor for ultrasensitive bioassay of biomarker cTnI. In the optimized analytical system, the resultant sensor exhibited a dynamic linear range of 0.0001-200 ng mL-1 and a low detection limit of 0.0095 pg mL-1 (S/N = 3). Eventually, this sensing platform was further explored in serum samples with satisfied recovery (102.0 %). This research renders some constructive insights for synthesis of high-entropy alloys and their expanded applications in bioassays and bio-devices.


Assuntos
Ligas , Técnicas Biossensoriais , Entropia , Ligas/química , Biomarcadores , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
18.
PeerJ ; 12: e16556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38223759

RESUMO

Background: Escherichia coli is a commonly used faecal indicator bacterium to assess the level of faecal contamination in aquatic habitats. However, extensive studies have reported that sediment acts as a natural reservoir of E. coli in the extraintestinal environment. E. coli can be released from the sediment, and this may lead to overestimating the level of faecal contamination during water quality surveillance. Thus, we aimed to investigate the effects of E. coli habitat transition from sediment to water on its abundance in the water column. Methods: This study enumerated the abundance of E. coli in the water and sediment at five urban lakes in the Kuala Lumpur-Petaling Jaya area, state of Selangor, Malaysia. We developed a novel method for measuring habitat transition rate of sediment E. coli to the water column, and evaluated the effects of habitat transition on E. coli abundance in the water column after accounting for its decay in the water column. Results: The abundance of E. coli in the sediment ranged from below detection to 12,000 cfu g-1, and was about one order higher than in the water column (1 to 2,300 cfu mL-1). The habitat transition rates ranged from 0.03 to 0.41 h-1. In contrast, the E. coli decay rates ranged from 0.02 to 0.16 h-1. In most cases (>80%), the habitat transition rates were higher than the decay rates in our study. Discussion: Our study provided a possible explanation for the persistence of E. coli in tropical lakes. To the best of our knowledge, this is the first quantitative study on habitat transition of E. coli from sediments to water column.


Assuntos
Escherichia coli , Lagos , Lagos/microbiologia , Microbiologia da Água , Qualidade da Água , Ecossistema
19.
Analyst ; 149(2): 426-434, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099364

RESUMO

Nowadays, organic emitters suffer from insufficient electrochemiluminescence (ECL) efficiency in aqueous solutions, and their practical applications are severely restricted in the bio-sensing field. In this work, palladium nanospheres-embedded metal-organic frameworks (Pd@MOFs) were exploited to enhance the ECL efficiency of 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) prepared by a one-pot method in aqueous environment. First, the Pd@MOFs were generated via in situ reduction of Pd nanospheres anchored onto the MOFs, and fabricated by orderly coordination of palladium chloride (PdCl2) with 1,2,4,5-benzenetetramine (BTA) tetrahydrochloride. Then, the influence of protons on the ECL response of BET was studied in detail to obtain stronger ECL emission using potassium persulfate (K2S2O8) as co-reactant in aqueous environment. As a result, a 1.47-fold ECL efficiency enlargement of BET/K2S2O8 was harvested at the Pd@MOFs/GCE, where Ru(bpy)32+ behaved as a standard. Based on the fact that the ECL signals of the BET-covered Pd@MOFs modified glassy carbon electrode (simplified as BET/Pd@MOFs/GCE) can be quenched by Cu2+, the as-built ECL sensor showed a wide linear range (1.0-100.0 pM) and a limit of detection (LOD) as low as 0.12 pM. Hence, such research offers huge potential to promote the development of organic emitters in ECL biosensors and environmental monitoring.

20.
Anal Chem ; 95(50): 18572-18578, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38064592

RESUMO

Electrochemiluminescence (ECL) has attracted significant interest in the analysis of cancer cells, where the ruthenium(II)-based emitter demonstrates urgency and feasibility to improve the ECL efficiency. In this work, the self-enhanced ECL luminophore was prepared by covalent anchoring of Pd nanoclusters on aminated metal organic frameworks (Pd NCs@MOFs), followed by linkage with bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) (RuP). The resultant luminophore showed 214-fold self-magnification in the ECL efficiency over RuP alone, combined by promoting the interfacial photoelectron transfer. The enhanced mechanism through ion annihilation was critically proved by controlled experiments and density functional theory (DFT) calculations. Based on the above, a "signal off" ECL biosensor was built by assembly of tyrosine kinase 7 (PTK-7) aptamer (Apt) on the established sensing platform for analysis of human lung cancer cells (A549). The built sensor showed a lower detection limit of 8 cells mL-1, achieving the single-cell detection. This work reported a self-enhanced strategy for synthesis of advanced ECL emitters, combined by exploring the ECL biosensing devices in the single-cell analysis of cancers.


Assuntos
Técnicas Biossensoriais , Neoplasias Pulmonares , Nanopartículas Metálicas , Estruturas Metalorgânicas , Rutênio , Humanos , Medições Luminescentes , Técnicas Eletroquímicas , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...