Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(6): 103745, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670058

RESUMO

Fowl adenovirus serotype 11 (FAdV-11) is one of the main causative agents of inclusion body hepatitis (IBH) in broilers. Outbreaks of FAdV-11-related IBH have been increasingly reported in China and many other geographical areas worldwide. However, the critical virulence factors of FAdV-11 remain uncertain due to the lack of technical platforms for efficient manipulation of FAdV-11 genome. Here, we reported the establishment of a FAdV-11 reverse genetic system based on a novel FAdV-11 Chinese isolate FJSW/2021 using the exonuclease combined with RecET (ExoCET), Redαß recombineering and ccdB counter-selection techniques for the first time. A recombinant FAdV-11 was rescued efficiently by using the established reverse genetic platform through swapping the ORF11 gene of the FAdV-11 FJSW/2021 with the ZsGreen fluorescent protein expression cassette. This study provides an effective technical platform for identifying virulence factors of FAdV-11 and developing recombinant FAdV-11-vectored vaccine candidates.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Galinhas , Doenças das Aves Domésticas , Genética Reversa , Sorogrupo , Animais , Doenças das Aves Domésticas/virologia , Infecções por Adenoviridae/veterinária , Infecções por Adenoviridae/virologia , Aviadenovirus/genética , Genética Reversa/métodos
2.
Planta ; 259(5): 120, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607398

RESUMO

MAIN CONCLUSION: This study reveals miRNA indirect regulation of C4 genes in sugarcane through transcription factors, highlighting potential key regulators like SsHAM3a. C4 photosynthesis is crucial for the high productivity and biomass of sugarcane, however, the miRNA regulation of C4 genes in sugarcane remains elusive. We have identified 384 miRNAs along the leaf gradients, including 293 known miRNAs and 91 novel miRNAs. Among these, 86 unique miRNAs exhibited differential expression patterns, and we identified 3511 potential expressed targets of these differentially expressed miRNAs (DEmiRNAs). Analyses using Pearson correlation coefficient (PCC) and Gene Ontology (GO) enrichment revealed that targets of miRNAs with positive correlations are integral to chlorophyll-related photosynthetic processes. In contrast, negatively correlated pairs are primarily associated with metabolic functions. It is worth noting that no C4 genes were predicted as targets of DEmiRNAs. Our application of weighted gene co-expression network analysis (WGCNA) led to a gene regulatory network (GRN) suggesting miRNAs might indirectly regulate C4 genes via transcription factors (TFs). The GRAS TF SsHAM3a emerged as a potential regulator of C4 genes, targeted by miR171y and miR171am, and exhibiting a negative correlation with miRNA expression along the leaf gradient. This study sheds light on the complex involvement of miRNAs in regulating C4 genes, offering a foundation for future research into enhancing sugarcane's photosynthetic efficiency.


Assuntos
MicroRNAs , Saccharum , Transcriptoma/genética , Saccharum/genética , Fatores de Transcrição/genética , Redes Reguladoras de Genes , MicroRNAs/genética
3.
Poult Sci ; 103(5): 103642, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537408

RESUMO

Fowl adenovirus serotype 11 (FAdV-11) is one of the primary causative agents of inclusion body hepatitis (IBH), which causes substantial economic losses in the world poultry industry. In this study, we characterized the genome of the fowl adenovirus serotype 11 (FAdV-11) isolate FJSW/2021. The full genome of FJSW/2021 was 44, 154 base pairs (bp) in length and had a similar organization to that of previously reported FAdV-11 isolates. Notably, compared with those of other reported FAdV-11 strains, the preterminal protein (pTP) of FAdV-11 FJSW/2021 has six amino acid (aa) insertions (S-L-R-I-I-C) between 470 and 475 and one aa mutation of L476F; moreover, the tandem repeat (TR) regions of TR1 and TR2 were 33 bp (1 repeat) and 1,080 bp (8 repeats) shorter than those of the Canadian nonpathogenic isolate ON NP2, respectively. The pathogenicity of FJSW/2021 was studied in 10-day-old specific pathogen-free chicken embryos following allantoic cavity inoculation and in 1-day-old, 1-wk-old and 2-wk-old SPF chickens following intramuscular inoculation with 107 TCID50 of the virus. The results showed that FJSW/2021 can induce typical severe IBH in chicks less than 2 wk old. These findings highlighted the genetic differences between the pathogenic and non-pathogenic FAdV-11 isolates. The data will provide guidance for identifying the virulence factors of FAdV-11 strains. The animal challenge model developed in our study will allow precise evaluation of the efficacy of potential FAdV-11 vaccine candidates.


Assuntos
Aviadenovirus , Galinhas , Genoma Viral , Doenças das Aves Domésticas , Sorogrupo , Animais , Doenças das Aves Domésticas/virologia , China , Aviadenovirus/genética , Aviadenovirus/patogenicidade , Virulência , Organismos Livres de Patógenos Específicos , Hepatite Viral Animal/virologia , Embrião de Galinha , Infecções por Adenoviridae/veterinária , Infecções por Adenoviridae/virologia
4.
BMC Genomics ; 25(1): 165, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336615

RESUMO

BACKGROUND: Sugarcane (Saccharum spp.) holds exceptional global significance as a vital crop, serving as a primary source of sucrose, bioenergy, and various by-products. The optimization of sugarcane breeding by fine-tuning essential traits has become crucial for enhancing crop productivity and stress resilience. Leucine-rich repeat receptor-like kinases (LRR-RLK) genes present promising targets for this purpose, as they are involved in various aspects of plant development and defense processes. RESULTS: Here, we present a detailed overview of phylogeny and expression of 288 (495 alleles) and 312 (1365 alleles) LRR-RLK genes from two founding Saccharum species, respectively. Phylogenetic analysis categorized these genes into 15 subfamilies, revealing considerable expansion or reduction in certain LRR-type subfamilies. Compared to other plant species, both Saccharum species had more significant LRR-RLK genes. Examination of cis-acting elements demonstrated that SsLRR-RLK and SoLRR-RLK genes exhibited no significant difference in the types of elements included, primarily involved in four physiological processes. This suggests a broad conservation of LRR-RLK gene function during Saccharum evolution. Synteny analysis indicated that all LRR-RLK genes in both Saccharum species underwent gene duplication, primarily through whole-genome duplication (WGD) or segmental duplication. We identified 28 LRR-RLK genes exhibiting novel expression patterns in response to different tissues, gradient development leaves, and circadian rhythm in the two Saccharum species. Additionally, SoLRR-RLK104, SoLRR-RLK7, SoLRR-RLK113, and SsLRR-RLK134 were identified as candidate genes for sugarcane disease defense response regulators through transcriptome data analysis of two disease stresses. This suggests LRR-RLK genes of sugarcane involvement in regulating various biological processes, including leaf development, plant morphology, photosynthesis, maintenance of circadian rhythm stability, and defense against sugarcane diseases. CONCLUSIONS: This investigation into gene duplication, functional conservation, and divergence of LRR-RLK genes in two founding Saccharum species lays the groundwork for a comprehensive genomic analysis of the entire LRR-RLK gene family in Saccharum. The results reveal LRR-RLK gene played a critical role in Saccharum adaptation to diverse conditions, offering valuable insights for targeted breeding and precise phenotypic adjustments.


Assuntos
Saccharum , Saccharum/genética , Saccharum/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Melhoramento Vegetal , Genômica , Regulação da Expressão Gênica de Plantas
5.
Nanoscale Adv ; 5(24): 6913-6924, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38059038

RESUMO

Bimetallic nanoparticles have been extensively studied as electrocatalysts due to their superior catalytic activity and selectivity compared to their monometallic counterparts. The properties of bimetallic materials depend on the ordering of the metals in the structure, and to tailor-make materials for specific applications, it is important to be able to control the atomic structure of the materials during synthesis. Here, we study the formation of bimetallic palladium indium nanoparticles to understand how the synthesis parameters and additives used influence the atomic structure of the obtained product. Specifically, we investigate a colloidal synthesis, where oleylamine was used as the main solvent while the effect of two surfactants, oleic acid (OA) and trioctylphosphine (TOP) was studied. We found that without TOP included in the synthesis, a Pd-rich intermetallic phase with the Pd3In structure initially formed, which transformed into large NPs of the CsCl-structured PdIn phase. When TOP was included, the syntheses yielded both In2O3 and Pd3In. In situ X-ray total scattering with Pair Distribution Function analysis was used to study the formation process of PdIn bimetallic NPs. Our results highlight how seemingly subtle changes to material synthesis methods can have a large influence on the product atomic structure.

6.
Plant Commun ; 4(5): 100633, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37271992

RESUMO

JUJUNCAO (Cenchrus fungigraminus; 2n = 4x = 28) is a Cenchrus grass with the highest biomass production among cultivated plants, and it can be used for mushroom cultivation, animal feed, and biofuel production. Here, we report a nearly complete genome assembly of JUJUNCAO and reveal that JUJUNCAO is an allopolyploid that originated ∼2.7 million years ago (mya). Its genome consists of two subgenomes, and subgenome A shares high collinear synteny with pearl millet. We also investigated the genome evolution of JUJUNCAO and suggest that the ancestral karyotype of Cenchrus split into the A and B ancestral karyotypes of JUJUNCAO. Comparative transcriptome and DNA methylome analyses revealed functional divergence of homeologous gene pairs between the two subgenomes, which was a further indication of asymmetric DNA methylation. The three types of centromeric repeat in the JUJUNCAO genome (CEN137, CEN148, and CEN156) may have evolved independently within each subgenome, with some introgressions of CEN156 from the B to the A subgenome. We investigated the photosynthetic characteristics of JUJUNCAO, revealing its typical C4 Kranz anatomy and high photosynthetic efficiency. NADP-ME and PEPCK appear to cooperate in the major C4 decarboxylation reaction of JUJUNCAO, which is different from other C4 photosynthetic subtypes and may contribute to its high photosynthetic efficiency and biomass yield. Taken together, our results provide insights into the highly efficient photosynthetic mechanism of JUJUNCAO and provide a valuable reference genome for future genetic and evolutionary studies, as well as genetic improvement of Cenchrus grasses.


Assuntos
Cenchrus , Cenchrus/metabolismo , Folhas de Planta/metabolismo , Fotossíntese/genética , Poaceae , Fosfoenolpiruvato Carboxilase/metabolismo
7.
Nat Plants ; 9(4): 554-571, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36997685

RESUMO

A diploid genome in the Saccharum complex facilitates our understanding of evolution in the highly polyploid Saccharum genus. Here we have generated a complete, gap-free genome assembly of Erianthus rufipilus, a diploid species within the Saccharum complex. The complete assembly revealed that centromere satellite homogenization was accompanied by the insertions of Gypsy retrotransposons, which drove centromere diversification. An overall low rate of gene transcription was observed in the palaeo-duplicated chromosome EruChr05 similar to other grasses, which might be regulated by methylation patterns mediated by homologous 24 nt small RNAs, and potentially mediating the functions of many nucleotide-binding site genes. Sequencing data for 211 accessions in the Saccharum complex indicated that Saccharum probably originated in the trans-Himalayan region from a diploid ancestor (x = 10) around 1.9-2.5 million years ago. Our study provides new insights into the origin and evolution of Saccharum and accelerates translational research in cereal genetics and genomics.


Assuntos
Saccharum , Saccharum/genética , Diploide , Genômica , Poaceae/genética , Poliploidia , Genoma de Planta
8.
J Am Chem Soc ; 145(3): 1769-1782, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36631996

RESUMO

Iridium nanoparticles are important catalysts for several chemical and energy conversion reactions. Studies of iridium nanoparticles have also been a key for the development of kinetic models of nanomaterial formation. However, compared to other metals such as gold or platinum, knowledge on the nature of prenucleation species and structural insights into the resultant nanoparticles are missing, especially for nanoparticles obtained from IrxCly precursors investigated here. We use in situ X-ray total scattering (TS) experiments with pair distribution function (PDF) analysis to study a simple, surfactant-free synthesis of colloidal iridium nanoparticles. The reaction is performed in methanol at 50 °C with only a base and an iridium salt as precursor. From different precursor salts─IrCl3, IrCl4, H2IrCl6, or Na2IrCl6─colloidal nanoparticles as small as Ir∼55 are obtained as the final product. The nanoparticles do not show the bulk iridium face-centered cubic (fcc) structure but show decahedral and icosahedral structures. The formation route is highly dependent on the precursor salt used. Using IrCl3 or IrCl4, metallic iridium nanoparticles form rapidly from IrxClyn- complexes, whereas using H2IrCl6 or Na2IrCl6, the iridium nanoparticle formation follows a sudden growth after an induction period and the brief appearance of a crystalline phase. With H2IrCl6, the formation of different Irn (n = 55, 55, 85, and 116) nanoparticles depends on the nature of the cation in the base (LiOH, NaOH, KOH, or CsOH, respectively) and larger particles are obtained with larger cations. As the particles grow, the nanoparticle structure changes from partly icosahedral to decahedral. The results show that the synthesis of iridium nanoparticles from IrxCly is a valuable iridium nanoparticle model system, which can provide new compositional and structural insights into iridium nanoparticle formation and growth.

9.
Vet Res ; 53(1): 75, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36175926

RESUMO

Fowl adenovirus serotype 4 (FAdV-4) and FAdV-8b are causative agents of hepatitis-hydropericardium syndrome (HHS) and inclusion body hepatitis (IBH), respectively. HHS and IBH co-infections were often reported in clinical, yet there are no commercially available bivalent vaccines for prevention and control of both FAdV-4 and -8b. In the present study, a chimeric FAdV-4 was firstly generated by substituting fiber-1 of FAdV-4 with fiber of FAdV-8b. The chimeric virus, rFAdV-4-fiber/8b, exhibited similar replication ability in vitro and pathogenicity in vivo to the parental wild type FAdV-4. A single dosage of vaccination with the inactivated rFAdV-4-fiber/8b induced high antibody titers against fiber-2 of FAdV-4 and fiber of FAdV-8b and provided full protection against FAdV-4 and -8b challenge. These results demonstrated that fiber of FAdV-8b could replace the role of fiber-1 of FAdV-4 in the process of viral infection, and rFAdV-4-fiber/8b could be used to make a potential bivalent vaccine for the control and prevention of HHS and IBH.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Hepatite , Doenças das Aves Domésticas , Vacinas Virais , Infecções por Adenoviridae/prevenção & controle , Infecções por Adenoviridae/veterinária , Animais , Galinhas , Corpos de Inclusão , Sorogrupo , Vacinas Combinadas
10.
JACS Au ; 2(7): 1757-1768, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35911453

RESUMO

Herein, we report a straightforward approach for the in situ preparation of Pt-Au alloy nanoparticles from Pt + xAu/C nanocomposites using monometallic colloidal nanoparticles as starting blocks. Four different compositions with fixed Pt content and varying Pt to Au mass ratios from 1:1 up to 1:7 were prepared as formic acid oxidation reaction (FAOR) catalysts. The study was carried out in a gas diffusion electrode (GDE) setup. It is shown that the presence of Au in the nanocomposites substantially improves the FAOR activity with respect to pure Pt/C, which serves as a reference. The nanocomposite with a mass ratio of 1:5 between Pt and Au displays the best performance during potentiodynamic tests, with the electro-oxidation rates, overpotential, and poisoning resistance being improved simultaneously. By comparison, too low or too high Au contributions in the nanocomposites lead to an unbalanced performance in the FAOR. The combination of operando small-angle X-ray scattering (SAXS), scanning transmission electron microscopy (STEM) elemental mapping, and wide-angle X-ray scattering (WAXS) reveals that for the nanocomposite with a 1:5 mass ratio, a conversion between Pt and Au from separate nanoparticles to alloy nanoparticles occurs during continuous potential cycling in formic acid. By comparison, the nanocomposites with lower Au contents, for example, 1:2, exhibit less in situ alloying, and the concomitant performance improvement is less pronounced. On applying identical location transmission electron microscopy (IL-TEM), it is revealed that the in situ alloying is due to Pt dissolution and re-deposition onto Au as well as Pt migration and coalescence with Au nanoparticles.

11.
Microbiol Spectr ; 10(3): e0149322, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35587634

RESUMO

Hepatitis-hydropericardium syndrome (HHS) induced by fowl adenovirus serotype 4 (FAdV-4) has caused huge economic losses to poultry industries. The key genes responsible for different virulence of FAdV-4 strains are not fully elucidated. Previous studies indicated that hexon of pathogenic FAdV-4 has a conserved arginine (R) at position 188, and a conserved isoleucine (I) is present at this position in reported nonpathogenic FAdV-4. Recently, it was reported that R188 of hexon is the determinant site for pathogenicity of the emerging Chinese FAdV-4 strain. However, the role of hexon amino acid 188 (aa188) has not been examined in the nonpathogenic FAdV-4 strain. In this study, three recombinant FAdV-4 viruses, H/H/R188I, O/O/I188R, and H/O/I188R, were constructed by mutating hexon aa188 of FAdV-4 pathogenic strain CH/HNJZ/2015 (H) and nonpathogenic strain ON1 (O), and pathogenicity was assessed in specific-pathogen-free (SPF) chickens. Consistent with previous findings, H/O/I188R exhibited pathogenicity similar to that of CH/HNJZ/2015, yet H/H/R188I induced no mortality. Unexpectedly, all chickens infected with O/O/I188R survived. Postmortem examination of O/O/I188R-infected chickens showed typical lesions of inclusion body hepatitis rather than HHS. Expression of proinflammatory cytokines in CH/HNJZ/2015- and H/O/I188R-infected chickens was significantly higher than that in H/H/R188I-, ON1-, and O/O/I188R-infected chickens. Analysis of predicted hexon protein structures indicated that aa188 mutation leads to conformational changes in the L1 loop of HNJZ-hexon but not in ON1-hexon. In summary, the present study demonstrated that the role of hexon aa188 in the virulence of FAdV-4 varies between different strains. Induction of HHS requires factors aside from hexon aa188 in the emerging Chinese FAdV-4 strain. IMPORTANCE HHS induced by FAdV-4 has caused huge economic losses to the poultry industry. The key determinants for the different virulence of FAdV-4 have not been fully elucidated. Here, we investigated the role of hexon aa188 in FAdV-4 strains with different virulence and showed that the role of hexon aa188 varies in FAdV-4 strains with different genetic contents. The hexon R188 may be the key amino acid for causing inclusion body hepatitis by the pathogenic FAdV-4 strain, and induction of HHS by FAdV-4 may need other viral cofactors. Moreover, the hexon R188I mutation greatly affected the expression of proinflammatory cytokines induced by the pathogenic strain CH/HNJZ/2015, but no significant difference was observed between the nonpathogenic strain ON1 and ON1 with hexon I188R mutation. We found that hexon aa188 mutation induced conformational changes to hexon protein in CH/HNJZ/2015 but not in ON1, which might be the underlying reason for the changing virulence.


Assuntos
Infecções por Adenoviridae , Doenças das Aves Domésticas , Adenoviridae/genética , Infecções por Adenoviridae/patologia , Infecções por Adenoviridae/veterinária , Aminoácidos , Animais , Galinhas , Citocinas/genética , Filogenia , Aves Domésticas , Sorogrupo , Virulência/genética
12.
Front Plant Sci ; 13: 820439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401601

RESUMO

Longan (Dimocarpus longan Lour.) is a productive fruit crop with high nutritional and medical value in tropical and subtropical regions. The MYB gene family is one of the most widespread plant transcription factor (TF) families participating in the flowering regulation. However, little is known about the MYB TFs involved in the flowering process in longan and its regulatory network. In this study, a total of 119 DlR2R3-MYB genes were identified in the longan genome and were phylogenetically grouped into 28 subgroups. The groupings were supported by highly conserved gene structures and motif composition of DlR2R3-MYB genes in each subgroup. Collinearity analysis demonstrated that segmental replications played a more crucial role in the expansion of the DlR2R3-MYB gene family compared to tandem duplications, and all tandem/segmental duplication gene pairs have evolved under purifying selection. Interspecies synteny analysis among longan and five representative species implied the occurrence of gene duplication events was one of the reasons contributing to functional differentiation among species. RNA-seq data from various tissues showed DlR2R3-MYB genes displayed tissue-preferential expression patterns. The pathway of flower development was enriched with six DlR2R3-MYB genes. Cis-acting element prediction revealed the putative functions of DlR2R3-MYB genes were related to the plant development, phytohormones, and environmental stresses. Notably, the orthologous counterparts between Arabidopsis and longan R2R3-MYB members tended to play conserved roles in the flowering regulation and stress responses. Transcriptome profiling on off-season flower induction (FI) by KClO3 indicated two up-regulated and four down-regulated DlR2R3-MYB genes involved in the response to KClO3 treatment compared with control groups. Additionally, qRT-PCR confirmed certain genes exhibited high expression in flowers/flower buds. Subcellular localization experiments revealed that three predicted flowering-associated MYB proteins were localized in the nucleus. Future functional studies on these potential candidate genes involved in the flowering development could further the understanding of the flowering regulation mechanism.

13.
Am J Transl Res ; 14(2): 1332-1338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273735

RESUMO

OBJECTIVE: To systematically determine the effect of Lianhua Qingwen Capsules on the early antiviral and anti-inflammatory action against COVID-19 (Coronavirus 2019) and its applicational value in the treatment of COVID-19. METHODS: The clinical data of 66 early-mid-stage COVID-19 patients admitted to hospitals in Guangzhou between January 2020 and April 2020 were retrospectively analyzed. The patients receiving Lianhua Qingwen Capsule treatment were assigned to the observation group (n=33) and those given conventional therapy were included in the control group (n=33). The two groups were compared in terms of clinical effects and main symptom (fever, cough and fatigue) disappearance rate. RESULTS: In comparison with the control group, 1) the total effective rate was significantly higher in the observation group (P<0.05); 2) the disappearance rates of fever, cough and fatigue were statistically higher in the observation group; 3) the treatment time was significantly shorter and patient recovery was significantly better in the observation group; 4) the laboratory index levels [white blood cell (WBC), interleukin-6 (IL-6), serum amyloid A (SAA)] were better in the observation group. CONCLUSION: Lianhua Qingwen Capsules can significantly improve the total effective rate for COVID-19 patients, as well as shorten the hospital stay and treatment time, which is worth of promotion in the clinic.

14.
Beilstein J Nanotechnol ; 13: 230-235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281627

RESUMO

A surfactant-free synthesis of precious metal nanoparticles (NPs) performed in alkaline low-boiling-point solvents has been recently reported. Monoalcohols are here investigated as solvents and reducing agents to obtain colloidal Os nanoparticles by using low-temperature (<100 °C) surfactant-free syntheses. The effect of the precursor (OsCl3 or H2OsCl6), precursor concentration (up to 100 mM), solvent (methanol or ethanol), presence or absence of a base (NaOH), and addition of water (0 to 100 vol %) on the resulting nanomaterials is discussed. It is found that no base is required to obtain Os nanoparticles as opposed to the case of Pt or Ir NPs. The robustness of the synthesis for a precursor concentration up to 100 mM allows for the performance of X-ray total scattering with pair distribution function (PDF) analysis, which shows that 1-2 nm hexagonal close packed (hcp) NPs are formed from chain-like [OsO x Cl y ] complexes.

15.
Poult Sci ; 101(3): 101695, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35077922

RESUMO

Fowl adenovirus serotype 4 (FAdV-4) is the primary causative agent of hepatitis-hydropericardium syndrome (HHS) causing great economic losses to the world poultry industry. The exact factors responsible for the pathogenesis of hypervirulent FAdV-4 have not been completely elucidated. Hypervirulent FAdV-4 infection induces inflammatory damages in accompany with a high level of proinflammatory interleukin-1 beta (IL-1ß) secretion in a variety of organs. Investigation of the mechanisms underlying hypervirulent FAdV-4-induced IL-1ß secretion would contribute to understanding of the pathogenesis of FAdV-4. Here, we investigated whether FAdV-4 infection activates NLRP3 inflammasome in chicken macrophage cell line HD11. The results showed that stimulation of HD11 with hypervirulent FAdV-4 induced NLRP3- and Caspase-1-dependent secretion of IL-1ß. Genetic knockdown of NLRP3 or Caspase-1 expression, a critical component of inflammasome, significantly downregulated IL-1ß expression, indicating that activation of the NLRP3 inflammasome contributed to the FAdV-4-induced IL-1ß secretion. Moreover, ATP signaling and potassium efflux were involved in the process of NLRP3 inflammasome activation. Our data indicated that hypervirulent FAdV-4 infection induces the activation of NLRP3 inflammasome and followed by massive secretion of IL-1ß of macrophages, which thereby contribute to the inflamed lesion of tissues.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Caspase 1/metabolismo , Galinhas/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta , Macrófagos/metabolismo
16.
Arch Virol ; 167(2): 281-292, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34839444

RESUMO

Hepatitis-hydropericardium syndrome (HHS), caused by fowl adenovirus serotype 4 (FAdV-4), has spread on chicken farms worldwide, causing huge economic losses. Currently, the exact mechanism of pathogenesis of FAdV-4 remains unknown. Despite the severe inflammatory damage observed in chickens infected with pathogenic FAdV-4, few studies have focused on the host immune system-virus interactions and cytokine secretion. Host immunity acts as one of the most robust defense mechanisms against infection by pathogens, and cytokines are important in their elimination. However, excessive inflammatory cytokine secretion could contribute to the pathogenesis of FAdV-4. Understanding of the roles of cytokines produced during FAdV-4 infection is important for the study of pathogenicity and for developing strategies to control FAdV-4. Several previous studies have addressed the immune responses to FAdV-4 infection, but there has not been a systematic review of this work. The present review provides a detailed summary of the current findings on cytokine production induced by FAdV-4 infection to accelerate our understanding of FAdV-4 pathogenesis.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Doenças das Aves Domésticas , Adenoviridae , Infecções por Adenoviridae/veterinária , Animais , Aviadenovirus/genética , Galinhas , Citocinas/genética , Sorogrupo
17.
IMA Fungus ; 12(1): 35, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930496

RESUMO

The mating compatibility in fungi is generally governed by genes located within a single or two unlinked mating type (MAT) loci. Hypsizygus marmoreus is an edible mushroom in the order Agaricales with a tetrapolar system, which contains two unlinked MAT loci-homeodomain (HD) transcription factor genes and pheromone/pheromone receptor genes (P/R). In this study, we analyzed the genetic structure and diversity of MAT loci in tetrapolar system of H. marmoreus through sequencing of 54 heterokaryon and 8 homokaryon strains. Although within the HD loci, the gene order was conserved, the gene contents were variable, and the HD loci haplotypes were further classified into four types. By analyzing the structure, phylogeny, and the HD transmissibility based on the progeny of these four HD mating-type loci types, we found that they were heritable and tightly linked at the HD loci. The P/R loci genes were found to comprise three pheromone receptors, three pheromones, and two pheromone receptor-like genes. Intra- and inter-specific phylogenetic analyses of pheromone receptors revealed that the STE3 genes were divided into three groups, and we thus theorize that they diverged before speciation. Comparative analysis of the MAT regions among 73 Basidiomycete species indicated that the diversity of HD and P/R loci in Agaricales and Boletales may contribute to mating compatibility. The number of HD genes were not correlated with the tetrapolar or bipolar systems. In H. marmoreus, the expression levels of these genes at HD and P/R loci of compatible strains were found higher than in those of homonuclear/homokaryotic strains, indicating that these mating genes acted as switches for mating processes. Further collinear analysis of HD loci in interspecific species found that HD loci contains conserved recombination hotspots showing major rearrangements in Coprinopsis cinerea and Schizophyllum commune, suggesting different mechanisms for evolution of physically linked MAT loci in these groups. It seems likely that gene rearrangements are common in Agaricales fungi around HD loci. Together, our study provides insights into the genomic basis of mating compatibility in H. marmoreus.

18.
Vaccines (Basel) ; 9(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960229

RESUMO

Newcastle disease virus (NDV) and infectious bursal disease virus (IBDV) are the two most important and widespread viruses causing huge economic losses in the global poultry industry. Outbreaks of genotype VII NDV and IBDV variants in vaccinated poultry flocks call for genetically matched vaccines. In the present study, a genetic matched chimeric NDV LaSota vaccine strain expressing VP2 gene of IBDV variant, rLaS-VIIF/HN-VP2 was generated for the first time, in which both the F and HN genes of LaSota were replaced with those of the genotype VII NDV strain FJSW. The cleavage site of the FJSW strain F protein in the rLaS-VIIF/HN-VP2 genome was mutated to the avirulent motif found in LaSota. Expression of IBDV VP2 protein was confirmed by western blot. The rLaS-VIIF/HN-VP2 maintained the efficient replication ability in embryonated eggs, low pathogenicity and genetic stability comparable to that of parental LaSota virus. One dose oculonasal vaccination of one-week-old SPF chickens with rLaS-VIIF/HN-VP2 induced full protection against genotype VII NDV and IBDV lethal challenge. These results indicate that the rLaS-VIIF/HN-VP2 is a promising bivalent vaccine to prevent infections of IBDV and genotype VII NDV.

19.
Res Vet Sci ; 142: 133-140, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34952258

RESUMO

Senecavirus A (SVA) is an emerging picornavirus associated with porcine idiopathic vesicular disease (PIVD), which is clinically indistinguishable from foot-and-mouth disease and other vesicular diseases in pigs. In recent years, the wide spread of SVA has caused huge economic losses to the world's pig industry. However, there are no vaccines currently available to prevent and control the infection of SVA due to the extensive diversity of SVA isolates and high cost of the pig model for vaccine evaluation. In the present study, a novel SVA CH-HNCY-2019 strain with unique amino-acid mutations in VP1, VP3 and 3C was isolated from the central part of China. A mouse model was proposed to for evaluation of the immunogenicity and protective efficacy of the inactivated CH-HNCY-2019 vaccine. The results indicated that one dose immunization of 107TCID50 inactivated CH-HNCY-2019 vaccine in mice induced a high titer of neutralizing antibody and complete protection. After challenging with the homologous virus, no viral RNA or histopathological damages were detected in the heart, liver, spleen, lung, kidney, intestine and brain tissues of the immunized mice. However, viral RNA and different degrees of histopathological damages were observed in all corresponding tissues of the unimmunized mice. In summary, the present study proved that mouse is a candidate animal model for the primary evaluation of the immunogenicity and protection efficacy of SVA vaccines for the first time. In addition, the inactivated SVA CH-HNCY-2019 vaccine was immunogenic and could protect mice against homologous viral challenges.

20.
ACS Omega ; 6(31): 20303-20308, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34395978

RESUMO

A CBr4 mediated [4 + 1] dehydrocyclization was developed for the synthesis of imidazo[1,5-a]heterocycles from pyridin-2-ylmethanamines and aldehydes. This method was highly practical with the advantages of wide substrate scope, functional group tolerance, and mild reaction conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...