Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(11): e202215329, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36602285

RESUMO

Poly(1,2-dithiolane)s are a family of intrinsically recyclable polymers due to their dynamic covalent disulfide linkages. Despite the common use of thiolate-initiated anionic ring-opening polymerization (ROP) under basic condition, cationic ROP is still not exploited. Here we report that disulfide bond can act as a proton acceptor, being protonated by acids to form sulfonium cations, which can efficiently initiate the ROP of 1,2-dithiolanes and result in high-molecular-weight (over 1000 kDa) poly(disulfide)s. The reaction can be triggered by adding catalytic amounts of acids and non-coordinating anion salts, and completed in few minutes at room temperature. The acidic conditions allow the applicability for acidic monomers. Importantly, the reaction condition can be under open air without inert protection, enabling the nearly quantitative chemical recycling from bulk materials to original monomers.

2.
Angew Chem Int Ed Engl ; 62(3): e202214422, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36378119

RESUMO

Enabling dynamically tunable emissive systems offers opportunities for constructing smart materials. Clusteroluminescence, as unconventional luminescence, has attracted increasing attention in both fundamental and applied sciences. Herein, we report a supramolecular poly(disulfides) network with tunable clusteroluminescence. The reticular H-bonds synergize the rigidity and mobility of dynamic networks, and endow the resulting materials with mechanical adaptivity and robustness, simultaneously enabling efficient clusteroluminescence and phosphorescence at 77 K. Orthogonally tunable luminescence are achieved in two manners, i.e., slow backbone disulfide exchange and fast side-chain metal coordination. Further exploration of the reprocessability and chemical closed-loop recycling of intrinsic dynamic networks for sustainable materials is feasible. We foresee that the synergistic strategy of dynamic chemistry offers a novel pathway and potential opportunities for smart emissive materials.

3.
ACS Appl Mater Interfaces ; 13(37): 44860-44867, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34499480

RESUMO

Developing photopolymerizable polymeric materials offers many opportunities to process materials in a remote and controllable manner. However, most photopolymerizable technologies require the external introduction of photoabsorbing units, whereas designing intrinsically photopolymerizable polymers is still highly challenging. Here, we report that a natural small-molecule disulfide, thioctic acid, can be directly transformed into a poly(disulfides) network under the irradiation of visible light without any external additives. The resulting polymer network exhibits optical transparency, mechanical stretchability and toughness, ambient self-healing ability, and especially strong adhesive ability to different surfaces. The dynamic covalent backbones of the poly(disulfides) endow the depolymerization ability to recycle the material in a closed-loop manner. We foresee that this facile and robust photopolymerization system is of great promise toward low-cost and high-performance photocuring coatings and adhesives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...