Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 21, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195554

RESUMO

Tumor cells primarily employ the PD-1/PD-L1 pathway to thwart the anti-tumor capabilities of T lymphocytes, inducing immunosuppression. This occurs through the direct interaction of PD-L1 with PD-1 on T lymphocyte surfaces. Recent research focusing on the tumor microenvironment has illuminated the pivotal role of immune cells, particularly tumor-associated macrophages (TAMs), in facilitating PD-L1-mediated immunosuppression. Exosomes, characterized by their ability to convey information and be engulfed by cells, significantly contribute to promoting TAM involvement in establishing PD-L1-mediated immunosuppression within the tumor microenvironment. Exosomes, characterized by their ability to convey information and be engulfed by cells, significantly contribute to promoting TAM involvement in establishing PD-L1-mediated immunosuppression within the tumor microenvironment. In addition to receiving signals from tumor-derived exosomes that promote PD-L1 expression, TAMs also exert control over PD-L1 expression in tumor cells through the release of exosomes. This paper aims to summarize the mechanisms by which exosomes participate in this process, identify crucial factors that influence these mechanisms, and explore innovative strategies for inhibiting or reversing the tumor-promoting effects of TAMs by targeting exosomes.


Assuntos
Exossomos , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Macrófagos Associados a Tumor , Terapia de Imunossupressão
2.
Front Oncol ; 13: 1281545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965469

RESUMO

Background: Pancreatic cancer (PC) is widely recognized as one of the most malignant forms of cancer worldwide. Monotherapy with immune checkpoint inhibitors (ICI) has shown limited efficacy in treating this disease. There was controversy surrounding whether combining ICI with chemotherapy provided superior outcomes compared to chemotherapy alone. Methods: In this study, patients diagnosed with unresectable stage III/IV pancreatic cancer (PC) were classified as receiving programmed cell death protein 1 (PD-1) blockade plus gemcitabine and nab-paclitaxel (AG regimen) (PD-1/chemo, n=27, 50.9%) or chemotherapy alone (chemo, n=26, 49.1%) arm. The primary study endpoints included progression-free survival (PFS) and overall survival (OS), with an additional assessment of treatment-related adverse events graded as three or higher. Chi-square (χ2) statistics were employed to analyze the clinical differences between the two groups, while Kaplan-Meier curves were used to assess the difference in PFS and OS. Statistical significance was defined as P-values less than 0.05 (P < 0.05). Results: The median follow-up duration was 22 months (range 1-28 months). In the PD-1/chemo arm, the median PFS was eight months, whereas it was 3.5 months in the chemo arm (HR=0.459, 95% CI: 0.252-0.846, P=0.002). Furthermore, the median OS was 15 months in the PD-1/chemo arm and eight months in the chemo arm (HR=0.345, 95% CI: 0.183-0.653, P<0.001). Within the PD-1/chemo arm, 15 (55.6%) patients experienced grade 3 treatment-related adverse events, compared to 13 (50.0%) patients in the chemo arm. Conclusions: PD-1 blockade combined with nab-paclitaxel plus gemcitabine demonstrated superior efficacy to chemotherapy alone for unresectable stage III/IV PC patients. Future studies were warranted to identify immunosensitive patient subgroups within the PC population, ultimately leading to the development of more efficacious therapeutic strategies.

3.
Front Immunol ; 14: 1209947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649478

RESUMO

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the first-line standard treatment for advanced non-small cell lung cancer (NSCLC) with EGFR mutation. However, resistance to EGFR-TKIs is inevitable. Currently, most studies on the mechanism of EGFR-TKIs resistance mainly focus on the spontaneous resistance phenotype of NSCLC cells. Studies have shown that the tumor microenvironment (TME) also mediates EGFR-TKIs resistance in NSCLC. Tumor-associated macrophages (TAMs), one of the central immune cells in the TME of NSCLC, play an essential role in mediating EGFR-TKIs resistance. This study aims to comprehensively review the current mechanisms underlying TAM-mediated resistance to EGFR-TKIs and discuss the potential efficacy of combining EGFR-TKIs with targeted TAMs therapy. Combining EGFR-TKIs with TAMs targeting may improve the prognosis of NSCLC with EGFR mutation to some extent.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Microambiente Tumoral , Macrófagos Associados a Tumor , Resistencia a Medicamentos Antineoplásicos
4.
Med Oncol ; 40(9): 254, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505345

RESUMO

Lung cancer is the leading cause of cancer-related mortality worldwide. The advent of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has significantly improved survival rates of patients with EGFR-mutant non-small cell lung cancer (NSCLC). However, as with other antitumor drugs, resistance to EGFR-TKIs is inevitably develops over time. Exosomes, extracellular vesicles with a 30-150 nm diameter, have emerged as vital mediators of intercellular communication. Recent studies revealed that exosomes carry non-coding RNAs (ncRNAs), including circular RNA (circRNA), microRNA (miRNA), and long noncoding RNA (lncRNA), which contribute to the development of EGFR-TKIs resistance. This review provides a comprehensive overview of the current research on exosomal ncRNAs mediating EGFR-TKIs resistance in EGFR-mutated NSCLC. In the future, detecting exosome ncRNAs can be used to monitor targeted therapy for NSCLC. Meanwhile, developing therapeutic regimens targeting these resistance mechanisms may provide additional clinical benefits to patients with EGFR-mutated NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , RNA Longo não Codificante/genética , /uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...