Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Cell Int ; 24(1): 312, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256868

RESUMO

BACKGROUND: This study aims to explore the molecular mechanism of lncRNA RP3-340B19.3 on breast cancer cell proliferation and metastasis and clinical significance of lncRNA RP3-340B19.3 for breast cancer. METHODS: The subcellular localization of lncRNA RP3-340B19.3 was identified using RNA fluorescence in situ hybridization (FISH). The expression of lncRNA RP3-340B19.3 in breast cancer cells, breast cancer tissues, as well as the serum and serum exosomes of breast cancer patients, was measured through quantitative RT-PCR. In the in vitro setting, we conducted experiments to observe the effects of RP3-340B19.3 on both cell migration and proliferation. This was achieved through the utilization of transwell migration assays as well as clone formation assays. Meanwhile, transwell migration assays and clone formation assays were used to observe the effects of MDA-MB-231-exosomes enriched in RP3-340B19.3 on breast cancer microenvironment cells MCF7 and BMMSCs. Additionally, western blotting techniques were used to assess the expression levels of proteins associated with essential cellular processes such as proliferation, apoptosis, and metastasis. In vivo, the impact of RP3-340B19.3 knockdown on tumour weight and volume was observed within a nude mice model. We aimed to delve into the intricate molecular mechanisms involving RP3-340B19.3 by using bioinformatics analysis, dual luciferase reporter gene experiments and western blotting. Moreover, the potential correlations between RP3-340B19.3 expression and various clinical pathological characteristics were analyzed. RESULTS: Our investigation revealed that RP3-340B19.3 was expressed in both the cytoplasm and nucleus, with a noteworthy increase in breast cancer cells. Notably, we found that RP3-340B19.3 exerted a promoting influence on the proliferation and migration of breast cancer cells, both in vitro and in vivo. MDA-MB-231-exosomes enriched in RP3-340B19.3 promoted the proliferation and migration of MCF7 and BMMSCs in vitro. Mechanistically, RP3-340B19.3 demonstrated the capability to modulate the expression of MORC4 by forming a complex with miR-4510. This interaction subsequently triggered the activation of the NF-κB and Wnt-ß-catenin signaling pathways. Furthermore, our study highlighted the potential diagnostic utility of RP3-340B19.3. We discovered its presence in the serum and exosomes of breast cancer patients, showing promising efficacy as a diagnostic marker. Notably, the diagnostic potential of RP3-340B19.3 was particularly significant in relation to distinguishing between different pathological types of breast cancer and correlating with tumour diameter. CONCLUSION: Our findings establish that RP3-340B19.3 plays a pivotal role in driving the proliferation and metastasis of breast cancer. Additionally, exosomes enriched in RP3-340B19.3 could influence MCF7 and BMMSCs in tumour microenvironment, promoting the progression of breast cancer. This discovery positions RP3-340B19.3 as a prospective novel candidate for a tumour marker, offering substantial potential in the realms of breast cancer diagnosis and treatment strategies.

2.
Hum Exp Toxicol ; 43: 9603271241265105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39291962

RESUMO

The purpose of this study was to investigate the regulatory role and underlying mechanisms of circRNA_001373 in the hepatic stellate cell (HSC) activation. Quantitative real-time polymerase chain reaction was used to detect the expression of circRNA_001373, miR-142a-5p and Becn1. The viability of JS-1 cells was measured by Cell Counting Kit-8. The targeting relationship between miR-142a-5p and CircRNA_001373, as well as between miR-142a-5p and Becn1 was predicted using CircInteractome and TargetScan databases, respectively, and validated by dual-luciferase reporter assay. Western blot was utilized to determine the expression levels of proteins related to autophagy and the activation if HSCs in JS-1 cells. After activation by platelet-derived growth factor-BB, an increase was observed in the expression of collagen I and α-smooth muscle actin proteins. The expression of CircRNA_001373 was up-regulated in the activated HSCs. Knockdown of CircRNA_001373 significantly inhibited cell viability and activation of JS-1 cells, as well as autophagy in the activated HSCs. CircRNA_001373 could sponge miR-142a-5p in the activated HSCs, which in turn elevated the Becn1 expression. Concurrent knockdown of both CircRNA_001373 and miR-142a-5p reversed the inhibitory effects of the knockdown of CircRNA_001373 alone on cell viability and autophagy in activated JS-1 cells. CircRNA_ 001373 promotes cell viability and autophagy as well as the activation of JS-1 cells by regulating the miR-142a-5p/Becn1 axis.


Assuntos
Autofagia , Proteína Beclina-1 , Células Estreladas do Fígado , Cirrose Hepática , MicroRNAs , RNA Circular , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Autofagia/efeitos dos fármacos , RNA Circular/genética , RNA Circular/metabolismo , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/induzido quimicamente , Linhagem Celular , Animais , Camundongos , Sobrevivência Celular/efeitos dos fármacos
3.
Clinics (Sao Paulo) ; 79: 100441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38976936

RESUMO

OBJECTIVE: This study aimed to identify differentially expressed microRNAs (miRNAs) in exosomes derived from the blood plasma of Rheumatoid Arthritis (RA) patients and explore their clinical significance and biological roles. METHODS: Illumina high-throughput sequencing was employed to measure miRNA expression levels in plasma exosomes, followed by validation using qRT-PCR. The correlation between exosomal miRNAs and disease activity was systematically analyzed. Additionally, the pathogenic effects of RA exosomes were investigated through bioinformatics analysis and in vitro experiments. RESULTS: Significantly reduced levels of exosomal miR-144-3p and miR-30b-5p were observed in RA patients, which were negatively correlated with DAS28 scores and anti-CCP antibody levels. ROC curve analysis showed that miR-144-3p and miR-30b-5p in plasma exosomes could effectively distinguish RA patients from healthy controls, with AUC values of 0.725 and 0.773, respectively. Combining bioinformatics analysis and in vitro experiments, it was demonstrated that plasma exosomes contribute to ongoing autoantibody production in RA by promoting B-cell differentiation and antibody production. CONCLUSION: The present study indicates that plasma exosomes from RA patients may be potentially pathogenic. Exosomal miR-144-3p and miR-30b-5p exhibit significant decreases in RA patients and are associated with disease activity, suggesting their potential as valuable biomarkers for RA.


Assuntos
Artrite Reumatoide , Linfócitos B , Exossomos , MicroRNAs , Humanos , Artrite Reumatoide/sangue , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , MicroRNAs/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Linfócitos B/imunologia , Estudos de Casos e Controles , Adulto , Biomarcadores/sangue , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real
4.
bioRxiv ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38948723

RESUMO

Oxidative protein folding in the endoplasmic reticulum (ER) is essential for all eukaryotic cells yet generates hydrogen peroxide (H2O2), a reactive oxygen species (ROS). The ER-transmembrane protein that provides reducing equivalents to ER and guards the cytosol for antioxidant defense remains unidentified. Here we combine AlphaFold2-based and functional reporter screens in C. elegans to identify a previously uncharacterized and evolutionarily conserved protein ERGU-1 that fulfills these roles. Deleting C. elegans ERGU-1 causes excessive H2O2 and transcriptional gene up-regulation through SKN-1, homolog of mammalian antioxidant master regulator NRF2. ERGU-1 deficiency also impairs organismal reproduction and behaviors. Both C. elegans and human ERGU-1 proteins localize to ER membranes and form network reticulum structures. We name this system ER-GUARD, Endoplasmic Reticulum Guardian Aegis of Redox Defense. Human and Drosophila homologs of ERGU-1 can rescue C. elegans mutant phenotypes, demonstrating evolutionarily ancient and conserved functions. Together, our results reveal an ER-membrane-specific protein machinery and defense-net system ER-GUARD for peroxide detoxification and suggest a previously unknown but conserved pathway for antioxidant defense in animal cells.

5.
Ecol Evol ; 14(6): e11528, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932943

RESUMO

Livestock grazing can strongly determine how grasslands function and their role in the carbon cycle. However, how ecosystem carbon exchange responds to grazing and the underlying mechanisms remain unclear. We measured ecosystem carbon fluxes to explore the changes in carbon exchange and their driving mechanisms under different grazing intensities (CK, control; HG, heavy grazing; LG, light grazing; MG, moderate grazing) based on a 16-year long-term grazing experimental platform in a desert steppe. We found that grazing intensity influenced aboveground biomass during the peak growing season, primarily by decreasing shrubs and semi-shrubs and perennial forbs. Furthermore, grazing decreased net ecosystem carbon exchange by decreasing aboveground biomass, especially the functional group of shrubs and semi-shrubs. At the same time, we found that belowground biomass and soil ammonium nitrogen were the driving factors of soil respiration in grazed systems. Our study indicates that shrubs and semi-shrubs are important factors in regulating ecosystem carbon exchange under grazing disturbance in the desert steppe, whereas belowground biomass and soil available nitrogen are important factors regulating soil respiration under grazing disturbance in the desert steppe; this results provide deeper insights for understanding how grazing moderates the relationships between soil nutrients, plant biomass, and ecosystem CO2 exchange, which provide a theoretical basis for further grazing management.

6.
Open Med (Wars) ; 19(1): 20240945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756248

RESUMO

Liver fibrosis is a key contributor to hepatic disease-related mortality. Exosomes derived from mesenchymal stem cells (MSCs) have been revealed to improve liver fibrosis. To explore the effect and mechanism of MSC-derived exosomal miR-26a on liver fibrosis, exosomes were separated from bone marrow-derived MSCs (BMSCs) and used to treat with LX2 cells. The miR-26a level was decreased in BMSC-derived exosomes. Treatment with exosomes isolated from human BMSCs transfected with miR-26a mimics (miR-26a mimic-Exo) decreased the 5-ethynyl-2'-deoxyuridine-positive cell rate, the protein level of α-SMA and collagen I, and the glutathione (GSH) level but enhanced the apoptosis rate and the reactive oxide species (ROS) level in LX2 cells, which were reversed by the treatment of deferoxamine. Mechanically, miR-26a directly bound SLC7A11 mRNA and negatively modulated the level of SLC7A11 in LX2 cells. Overexpression of SLC7A11 reversed the miR-26a mimic-Exo-induced alterations in the level of ROS, Fe2+, malonaldehyde, and GSH in LX2 cells. In vivo, miR-26a mimic-Exo decreased the level of SLC7A11 and attenuated CCL4-induced liver fibrosis. Collectively, miR-26a mimic-Exo induced ferroptosis to alleviate liver fibrosis by regulating SLC7A11, which may provide new strategies for the treatment of liver fibrosis, and even other relevant diseases.

7.
Cell Rep ; 43(3): 113899, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446666

RESUMO

Insulin-mechanistic target of rapamycin (mTOR) signaling drives anabolic growth during organismal development; its late-life dysregulation contributes to aging and limits lifespans. Age-related regulatory mechanisms and functional consequences of insulin-mTOR remain incompletely understood. Here, we identify LPD-3 as a megaprotein that orchestrates the tempo of insulin-mTOR signaling during C. elegans aging. We find that an agonist insulin, INS-7, is drastically overproduced from early life and shortens lifespan in lpd-3 mutants. LPD-3 forms a bridge-like tunnel megaprotein to facilitate non-vesicular cellular lipid trafficking. Lipidomic profiling reveals increased hexaceramide species in lpd-3 mutants, accompanied by up-regulation of hexaceramide biosynthetic enzymes, including HYL-1. Reducing the abundance of HYL-1, insulin receptor/DAF-2 or mTOR/LET-363, normalizes INS-7 levels and rescues the lifespan of lpd-3 mutants. LPD-3 antagonizes SINH-1, a key mTORC2 component, and decreases expression with age. We propose that LPD-3 acts as a megaprotein brake for organismal aging and that its age-dependent decline restricts lifespan through the sphingolipid-hexaceramide and insulin-mTOR pathways.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Envelhecimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Insulina/metabolismo , Longevidade/fisiologia , Serina-Treonina Quinases TOR/metabolismo
8.
Sci Adv ; 10(4): eadj3880, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38266092

RESUMO

Early-life stress experiences can produce lasting impacts on organismal adaptation and fitness. How transient stress elicits memory-like physiological effects is largely unknown. Here, we show that early-life thermal stress strongly up-regulates tsp-1, a gene encoding the conserved transmembrane tetraspanin in C. elegans. TSP-1 forms prominent multimers and stable web-like structures critical for membrane barrier functions in adults and during aging. Increased TSP-1 abundance persists even after transient early-life heat stress. Such regulation requires CBP-1, a histone acetyltransferase that facilitates initial tsp-1 transcription. Tetraspanin webs form regular membrane structures and mediate resilience-promoting effects of early-life thermal stress. Gain-of-function TSP-1 confers marked C. elegans longevity extension and thermal resilience in human cells. Together, our results reveal a cellular mechanism by which early-life thermal stress produces long-lasting memory-like impact on organismal resilience and longevity.


Assuntos
Experiências Adversas da Infância , Proteínas de Caenorhabditis elegans , Resiliência Psicológica , Adulto , Humanos , Animais , Longevidade , Trombospondina 1 , Caenorhabditis elegans , Tetraspaninas/genética , Fatores de Transcrição , Proteínas de Caenorhabditis elegans/genética , Histona Acetiltransferases
9.
EMBO J ; 42(24): e114835, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953666

RESUMO

Natural selection drives the acquisition of organismal resilience traits to protect against adverse environments. Horizontal gene transfer (HGT) is an important evolutionary mechanism for the acquisition of novel traits, including metazoan acquisitions in immunity, metabolic, and reproduction function via interdomain HGT (iHGT) from bacteria. Here, we report that the nematode gene rml-3 has been acquired by iHGT from bacteria and that it enables exoskeleton resilience and protection against environmental toxins in Caenorhabditis elegans. Phylogenetic analysis reveals that diverse nematode RML-3 proteins form a single monophyletic clade most similar to bacterial enzymes that biosynthesize L-rhamnose, a cell-wall polysaccharide component. C. elegans rml-3 is highly expressed during larval development and upregulated in developing seam cells upon heat stress and during the stress-resistant dauer stage. rml-3 deficiency impairs cuticle integrity, barrier functions, and nematode stress resilience, phenotypes that can be rescued by exogenous L-rhamnose. We propose that interdomain HGT of an ancient bacterial rml-3 homolog has enabled L-rhamnose biosynthesis in nematodes, facilitating cuticle integrity and organismal resilience to environmental stressors during evolution. These findings highlight a remarkable contribution of iHGT on metazoan evolution conferred by the domestication of a bacterial gene.


Assuntos
Nematoides , Resiliência Psicológica , Animais , Caenorhabditis elegans/metabolismo , Filogenia , Transferência Genética Horizontal , Ramnose/metabolismo , Bactérias/genética
10.
bioRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37662235

RESUMO

Natural selection drives acquisition of organismal resilience traits to protect against adverse environments. Horizontal gene transfer (HGT) is an important evolutionary mechanism for the acquisition of novel traits, including metazoan acquisition of functions in immunity, metabolism, and reproduction via interdomain HGT (iHGT) from bacteria. We report that the nematode gene rml-3, which was acquired by iHGT from bacteria, enables exoskeleton resilience and protection against environmental toxins in C. elegans. Phylogenetic analysis reveals that diverse nematode RML-3 proteins form a single monophyletic clade most highly similar to bacterial enzymes that biosynthesize L-rhamnose to build cell wall polysaccharides. C. elegans rml-3 is regulated in developing seam cells by heat stress and stress-resistant dauer stage. Importantly, rml-3 deficiency impairs cuticle integrity, barrier functions and organismal stress resilience, phenotypes that are rescued by exogenous L-rhamnose. We propose that iHGT of an ancient bacterial rml-3 homolog enables L-rhamnose biosynthesis in nematodes that facilitates cuticle integrity and organismal resilience in adaptation to environmental stresses during evolution. These findings highlight the remarkable contribution of iHGT on metazoan evolution that is conferred by the domestication of bacterial genes.

11.
bioRxiv ; 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-37546737

RESUMO

Early-life stress experiences can produce lasting impacts on organismal adaptation and fitness. How transient stress elicits memory-like physiological effects is largely unknown. Here we show that early-life thermal stress strongly up-regulates tsp-1, a gene encoding the conserved transmembrane tetraspanin in C. elegans. TSP-1 forms prominent multimers and stable web-like structures critical for membrane barrier functions in adults and during aging. The up-regulation of TSP-1 persists even after transient early-life stress. Such regulation requires CBP-1, a histone acetyl-transferase that facilitates initial tsp-1 transcription. Tetraspanin webs form regular membrane structures and mediate resilience-promoting effects of early-life thermal stress. Gain-of-function TSP-1 confers marked C. elegans longevity extension and thermal resilience in human cells. Together, our results reveal a cellular mechanism by which early-life thermal stress produces long-lasting memory-like impact on organismal resilience and longevity.

12.
Contact (Thousand Oaks) ; 6: 25152564231186489, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455813

RESUMO

In eukaryotic cells, lipid transfer can occur at membrane contact sites (MCS) to facilitate the exchange of various lipids between two adjacent cellular organelle membranes. Lipid transfer proteins (LTPs), including shuttle LTP or bridge-like LTP (BLTP), transport lipids at MCS and are critical for diverse cellular processes, including lipid metabolism, membrane trafficking, and cell signaling. BLTPs (BLTP1-5, including the ATG2 and VPS13 family proteins) contain lipid-accommodating hydrophobic repeating ß-groove (RBG) domains that allow the bulk transfer of lipids through MCS. Compared with vesicular lipid transfer and shuttle LTP, BLTPs have been only recently identified. Their functions and regulatory mechanisms are currently being unraveled in various model organisms and by diverse approaches. In this review, we summarize the genetics, structural features, and biological functions of BLTP in the genetically tractable model organism C. elegans. We discuss our recent studies and findings on C. elegans LPD-3, a prototypical megaprotein ortholog of BLTP1, with identified lipid transfer functions that are evolutionarily conserved in multicellular organisms and in human cells. We also highlight areas for future research of BLTP using C. elegans and complementary model systems and approaches. Given the emerging links of BLTP to several human diseases, including Parkinson's disease and Alkuraya-Kucinskas syndrome, discovering evolutionarily conserved roles of BLTPs and their mechanisms of regulation and action should contribute to new advances in basic cell biology and potential therapeutic development for related human disorders.

13.
bioRxiv ; 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-36824874

RESUMO

Insulin-mTOR signaling drives anabolic growth during organismal development, while its late-life dysregulation may detrimentally contribute to aging and limit lifespans. Age-related regulatory mechanisms and functional consequences of insulin-mTOR remain incompletely understood. Here we identify LPD-3 as a megaprotein that orchestrates the tempo of insulin-mTOR signaling during C. elegans aging. We find that an agonist insulin INS-7 is drastically over-produced in early life and shortens lifespan in lpd-3 mutants, a C. elegans model of human Alkuraya-Kucinskas syndrome. LPD-3 forms a bridge-like tunnel megaprotein to facilitate phospholipid trafficking to plasma membranes. Lipidomic profiling reveals increased abundance of hexaceramide species in lpd-3 mutants, accompanied by up-regulation of hexaceramide biosynthetic enzymes, including HYL-1 (Homolog of Yeast Longevity). Reducing HYL-1 activity decreases INS-7 levels and rescues the lifespan of lpd-3 mutants through insulin receptor/DAF-2 and mTOR/LET-363. LPD3 antagonizes SINH-1, a key mTORC2 component, and decreases expression with age in wild type animals. We propose that LPD-3 acts as a megaprotein brake for aging and its age-dependent decline restricts lifespan through the sphingolipid-hexaceramide and insulin-mTOR pathways.

14.
Aging Cell ; 22(1): e13735, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36415159

RESUMO

How an organism dies is a fundamental yet poorly understood question in biology. An organism can die of many causes, including stress-induced phenoptosis, also defined as organismic death that is regulated by its genome-encoded programs. The mechanism of stress-induced phenoptosis is still largely unknown. Here, we show that transient but severe freezing-thaw stress (FTS) in Caenorhabditis elegans induces rapid and robust phenoptosis that is regulated by G-protein coupled receptor (GPCR) signaling. RNAi screens identify the GPCR-encoding fshr-1 in mediating transcriptional responses to FTS. FSHR-1 increases ligand interaction upon FTS and activates a cyclic AMP-PKA cascade leading to a genetic program to promote organismic death under severe stress. FSHR-1/GPCR signaling up-regulates the bZIP-type transcription factor ZIP-10, linking FTS to expression of genes involved in lipid remodeling, proteostasis, and aging. A mathematical model suggests how genes may promote organismic death under severe stress conditions, potentially benefiting growth of the clonal population with individuals less stressed and more reproductively privileged. Our studies reveal the roles of FSHR-1/GPCR-mediated signaling in stress-induced gene expression and phenoptosis in C. elegans, providing empirical new insights into mechanisms of stress-induced phenoptosis with evolutionary implications.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Humanos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Envelhecimento/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121891, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36152507

RESUMO

In this study, nitrogen-doped carbon dots (N-CDs) from pine needles were obtained by one-step hydrothermal synthesis without any chemical reagents. The fluorescence quenching and absorbance enhancement of N-CDs occurred when Fe3+ and folic acid (FA) were added. Based on this, the dual-mode detection sensor by fluorescence and ultraviolet-visible (UV-Vis) spectrophotometry for the determination of Fe3+ and FA was established. Detected by the dual-mode detection sensor under the optimized condition, the linear range of Fe3+ was 0.1-540 µM and FA was 0.1-165 µM. At the same time, the two inputs "NOR" and "OR" logic gates are constructed successfully according to the dual-mode sensor signals. The proposed dual-mode detection sensor is simple, efficient and stable; it can be applied to determinate Fe3+ and FA in practical samples successfully and the results are satisfactory.


Assuntos
Carbono , Pontos Quânticos , Nitrogênio , Ácido Fólico , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes
16.
Nat Commun ; 13(1): 6805, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357390

RESUMO

Cells adapt to cold by increasing levels of unsaturated phospholipids and membrane fluidity through conserved homeostatic mechanisms. Here we report an exceptionally large and evolutionarily conserved protein LPD-3 in C. elegans that mediates lipid trafficking to confer cold resilience. We identify lpd-3 mutants in a mutagenesis screen for genetic suppressors of the lipid desaturase FAT-7. LPD-3 bridges the endoplasmic reticulum (ER) and plasma membranes (PM), forming a structurally predicted hydrophobic tunnel for lipid trafficking. lpd-3 mutants exhibit abnormal phospholipid distribution, diminished FAT-7 abundance, organismic vulnerability to cold, and are rescued by Lecithin comprising unsaturated phospholipids. Deficient lpd-3 homologues in Zebrafish and mammalian cells cause defects similar to those observed in C. elegans. As mutations in BLTP1, the human orthologue of lpd-3, cause Alkuraya-Kucinskas syndrome, LPD-3 family proteins may serve as evolutionarily conserved highway bridges critical for ER-associated non-vesicular lipid trafficking and resilience to cold stress in eukaryotic cells.


Assuntos
Caenorhabditis elegans , Peixe-Zebra , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Fosfolipídeos/metabolismo , Retículo Endoplasmático/metabolismo , Membrana Celular/metabolismo , Mamíferos/metabolismo
17.
Curr Biol ; 32(22): 4941-4948.e3, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36223775

RESUMO

Amygdalin is a cyanogenic glycoside enriched in the tissues of many edible plants, including seeds of stone fruits such as cherry (Prunus avium), peach (Prunus persica), and apple (Malus domestica). These plants biosynthesize amygdalin in defense against herbivore animals, as amygdalin generates poisonous cyanide upon plant tissue destruction.1,2,3,4 Poisonous to many animals, amygdalin-derived cyanide is detoxified by potent enzymes commonly found in bacteria and plants but not most animals.5 Here we show that the nematode C. elegans can detoxify amygdalin by a genetic pathway comprising cysl-1, egl-9, hif-1, and cysl-2. A screen of a natural product library for hypoxia-independent regulators of HIF-1 identifies amygdalin as a potent activator of cysl-2, a HIF-1 transcriptional target that encodes a cyanide detoxification enzyme in C. elegans. As a cysl-2 paralog similarly essential for amygdalin resistance, cysl-1 encodes a protein homologous to cysteine biosynthetic enzymes in bacteria and plants but functionally co-opted in C. elegans. We identify exclusively HIF-activating egl-9 mutations in a cysl-1 suppressor screen and show that cysl-1 confers amygdalin resistance by regulating HIF-1-dependent cysl-2 transcription to protect against amygdalin toxicity. Phylogenetic analysis indicates that cysl-1 and cysl-2 were likely acquired from green algae through horizontal gene transfer (HGT) and functionally co-opted in protection against amygdalin. Since acquisition, these two genes evolved division of labor in a cellular circuit to detect and detoxify cyanide. Thus, algae-to-nematode HGT and subsequent gene function co-option events may facilitate host survival and adaptation to adverse environmental stresses and biogenic toxins.


Assuntos
Amigdalina , Proteínas de Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Amigdalina/metabolismo , Filogenia , Proteínas de Caenorhabditis elegans/metabolismo , Cianetos/metabolismo
18.
Open Res Eur ; 2: 23, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37811477

RESUMO

Background: Parkin, which when mutated leads to early-onset Parkinson's disease, acts as an E3 ubiquitin ligase. How Parkin is regulated for selective protein and organelle targeting is not well understood. Here, we used protein interactor and genetic screens in Caenorhabditis elegans ( C. elegans) to identify new regulators of Parkin abundance and showed their impact on autophagy-lysosomal dynamics and alpha-Synuclein processing. Methods: We generated a transgene encoding mCherry-tagged C. elegans Parkin - Parkinson's Disease Related 1 (PDR-1). We performed protein interactor screen using Co-immunoprecipitation followed by mass spectrometry analysis to identify putative interacting partners of PDR-1. Ribonucleic acid interference (RNAi) screen and an unbiased mutagenesis screen were used to identify genes regulating PDR-1 abundance. Confocal microscopy was used for the identification of the subcellular localization of PDR-1 and alpha-Synuclein processing. Results: We show that the mCherry::pdr-1 transgene rescues the mitochondrial phenotype of pdr-1 mutants and that the expressed PDR-1 reporter is localized in the cytosol with enriched compartmentalization in the autophagy-lysosomal system. We determined that the transgenic overexpression of the PDR-1 reporter, due to inactivated small interfering RNA (siRNA) generation pathway, disrupts autophagy-lysosomal dynamics. From the RNAi screen of putative PDR-1 interactors we found that the inactivated Adenine Nucleotide Translocator ant-1.1/hANT, or hybrid ubiquitin genes ubq-2/h UBA52 and ubl-1/h RPS27A encoding a single copy of ubiquitin fused to the ribosomal proteins L40 and S27a, respectively, induced PDR-1 abundance and affected lysosomal dynamics. In addition, we demonstrate that the abundant PDR-1 plays a role in alpha-Synuclein processing. Conclusions: These data show that the abundant reporter of  C. elegans Parkin affects the autophagy-lysosomal system together with alpha-Synuclein processing which can help in understanding the pathology in Parkin-related diseases.

19.
Mol Brain ; 14(1): 54, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726789

RESUMO

TMEM132D is a human gene identified with multiple risk alleles for panic disorders, anxiety and major depressive disorders. Defining a conserved family of transmembrane proteins, TMEM132D and its homologs are still of unknown molecular functions. By generating loss-of-function mutants of the sole TMEM132 ortholog in C. elegans, we identify abnormal morphologic phenotypes in the dopaminergic PDE neurons. Using a yeast two-hybrid screen, we find that NAP1 directly interacts with the cytoplasmic domain of human TMEM132D, and mutations in C. elegans tmem-132 that disrupt interaction with NAP1 cause similar morphologic defects in the PDE neurons. NAP1 is a component of the WAVE regulatory complex (WRC) that controls F-actin cytoskeletal dynamics. Decreasing activity of WRC rescues the PDE defects in tmem-132 mutants, whereas gain-of-function of TMEM132D in mammalian cells inhibits WRC, leading to decreased abundance of select WRC components, impaired actin nucleation and cell motility. We propose that metazoan TMEM132 family proteins play evolutionarily conserved roles in regulating NAP1 protein homologs to restrict inappropriate WRC activity, cytoskeletal and morphologic changes in the cell.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Citoesqueleto/ultraestrutura , Neurônios Dopaminérgicos/ultraestrutura , Proteínas de Membrana/metabolismo , Morfogênese/genética , Neurogênese/genética , Células Receptoras Sensoriais/ultraestrutura , Actinas/metabolismo , Animais , Evolução Biológica , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Forma Celular , Sequência Conservada , Neurônios Dopaminérgicos/metabolismo , Mutação com Ganho de Função , Genes Reporter , Células HEK293 , Humanos , Mutação com Perda de Função , Família Multigênica , Complexos Multiproteicos/fisiologia , Transtorno de Pânico/genética , Domínios Proteicos , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Células Receptoras Sensoriais/metabolismo , Técnicas do Sistema de Duplo-Híbrido
20.
J Cosmet Dermatol ; 20(2): 647-656, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33098181

RESUMO

BACKGROUND: Dry skin is a common skin condition caused by reduction of water-holding capacity, which is regulated by skin barrier function. Dry skin can also be a symptom that indicates a more serious diagnosis. There are a number of moisturizers on the market, which play an important role in dermatologic and cosmetic therapies. However, the demand for these products with good and therapeutic efficiency is still growing. AIMS: It remains necessary to investigate the effects of Elaeagnus L gum polysaccharides (EAP), which are prepared from gum of Elaeagnus angustifolia L. on the epidermal permeability barrier function and their possible underlying mechanisms. PATIENTS/METHODS: EAP were purified, analyzed, and tested on human keratinocyte cell line (HaCaT) and then on the skin in vivo to evaluate their antiinflammatory activities and their impacts on impaired skin barrier function. RESULTS: Histological analyses revealed that topical administration with EAP effectively attenuated dryness-like skin condition, including less percutaneous water loss rate, less infiltrate inflammation cells, and less epidermal thickening. Moreover, EAP inhibited the production of various inflammatory mediators and increased AQP-3, FLG, and LOR expression. CONCLUSION: Our results indicated that EAP enhances epidermal permeability barrier function, and they can be used as a promising adjuvant agent in skin care cosmetics and in treating some skin disorders characterized by cutaneous inflammation and abnormal barrier function.


Assuntos
Elaeagnaceae , Perda Insensível de Água , Animais , Epiderme , Proteínas Filagrinas , Camundongos , Polissacarídeos/farmacologia , Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA