Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Iran J Biotechnol ; 20(1): e3001, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35891955

RESUMO

Background: Chromium is one of the most used toxic heavy metals. A large amount of chromium waste is discharged into the environment every year, causing serious environmental pollution, especially the pollution of soil and water by hexavalent chromium. Eliminating hexavalent chromium is the primary challenge to achieve a pollution-free environment. Objectives: This study aims to understand the mechanism of Pichia guilliermondii's reduction of hexavalent chromium through enzymatic characteristic, oxidative stress response, and reduction product. Material and Methods: The strain Pichia guilliermondii ZJH-1 was isolated and stored in our laboratory. The hexavalent chromium uses 1,5-diphenyl carbazide method (DPC) to measure. The UV spectrophotometer was used to measure the intracellular antioxidant enzyme activity, and the kit was used to measure the activity of catalase and glutathione reductase. The reduction products were analyzed by ultraviolet full-wavelength scanning and FTIR. Results: The reduction of hexavalent chromium by ZJH-1 is accompanied by an increase in active oxygen and antioxidant levels. Chromate reductase mainly exists in the extracellular fluid, and the carboxyl, amide, hydroxide and other groups of the cell wall are involved in the bioremediation of Cr(VI) by complexing with Cr(VI) and Cr(III). After ZJH-1 was treated with different concentrations of Cr(VI), the expression of proteins with molecular weights of 15 kDa, 18 kDa, 35 kDa, 62 kDa, and 115 kDa increased significantly. This strain is the most suitable for chromate reductase (CChR). The optimum temperature is 40℃ and the optimum pH is 7.0. Cu2+ can enhance the activity of chromate reductase. At the optimum temperature and pH, the chromate reductase Km of this strain is 0.40 µmol and Vmax is 14.47 µmoL.L-1·min-1. Conclusions: The bioremediation of Cr(VI) by Pichia guilliermondii ZJH-1 is attributable to the reduction product (Cr(III)) that can be removed in the precipitate and can be fixed on the cell surface and accumulated in the cell.

2.
Materials (Basel) ; 15(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268962

RESUMO

A signal shut-off probe of Si, N-codoped carbon quantum dots (Si, N-CQDs) was exploited to detect Cr(VI) by fluorescence quenching without the aid of any biomolecules or labeling materials. The sensing system prepared the precursor of diacetone acrylamide and the silane coupling agent 3-aminopropyltriethoxysilane (KH-550) by a simple hydrothermal method, and the quantum yield is as high as 75% Si, N-CQDs. The fluorescence stability and microstructure of the Si, N-CQDs were studied. The Si, N-CQDs has a high sensitivity for detecting Cr(VI) with the linear range of 0-200 µM and the detection limit of 0.995 µM. The quenching mechanism of Si, N-CQDs is attributed to FRET.

3.
Soft Matter ; 16(31): 7332-7341, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32685953

RESUMO

We present a method for actuating LCE materials by microwave radiation. The microwave actuation performance of a polysiloxane-based nematic liquid crystalline elastomer (LCE) was investigated. The microwave-material interaction caused a dipolar loss, which created a heating effect to trigger the nematic-isotropic transition of the LCE matrix, thus leading to the deformation actuation of the LCE material. This energy conversion from radiant energy to thermal energy provided a contactless pathway to actuate the LCE material without the aid of other components acting as energy converters. The LCE demonstrated rapid maximum contraction upon microwave irradiation, and this microwave-stimulated response was fully reversible when the microwave irradiation was switched off. More importantly, the microwave actuation exhibited superiority relative to photo-actuation, which is the usual method of contactless actuation. The microwaves can penetrate the opaque thick barriers to effectively actuate the LCE due to their strong penetrability; they can also penetrate multiple LCE samples and actuate them almost simultaneously. By taking advantage of the salient features of microwave actuation, a microwave detector system, implementing the LCE as an actuator material, was fabricated. This demonstrated the performance of monitoring microwave irradiation intensities with good sensitivity and convenient manipulation.

4.
Polymers (Basel) ; 11(4)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018552

RESUMO

Crosslinked liquid crystalline polymers (CLCPs) containing azobenzene (AZO-CLCPs) are a type of promising material due to their significance in the design of light-driven smart actuators. Developing AZO-CLCP composites by incorporating AZO-CLCPs with other materials is an effective way of enhancing their practicability. Herein, we report an AZO-CLCP/CNT nanocomposite prepared by the in situ polymerization of diacrylates containing azobenzene chromophores on carbon nanotube (CNT) sheets. The liquid crystal phase structure of CLCP matrix was evidenced by the two-dimensional X-ray scattering. The prepared pure AZO-CLCP films and AZO-CLCP/CNT nanocomposite films demonstrated strong reversible photo-triggered deformation under the irradiation of UV light at 366 nm of wavelength, as a result of photo-induced isomerization of azobenzene moieties in the polymer network. But compared to pure AZO-CLCP films, the AZO-CLCP/CNT nanocomposite films could much more rapidly return to their initial shapes after the UV light irradiation was removed due to the elasticity effect of CNT sheets. The deformation behavior of AZO-CLCP/CNT nanocomposite films under the light irradiation was also different from that of the pure AZO-CLCP films due to the interfacial interaction between a polymer network and CNT sheet. Furthermore, incorporation of a CNT sheet remarkably increased the mechanical strength and robustness of the material. We also used this AZO-CLCP/CNT nanocomposite as a microvalve membrane actuator, which can be controlled by light, for a conceptual device of a microfluidic system. The results showed that this AZO-CLCP/CNT nanocomposite may have great potential in smart actuator applications for biological engineering, medical treatment, environment detection and microelectromechanical systems (MEMS), etc.

5.
RSC Adv ; 8(9): 4857-4866, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35539513

RESUMO

Liquid crystal elastomers (LCEs) are important smart materials that can undergo reversible deformation in response to liquid crystal (LC) phase transitions. A low threshold temperature for LC phase transition is advantageous because the LCE material can be more conveniently actuated by the applied stimulus. In this work, we investigated the effect of a nonliquid crystal chain on the reduction of threshold temperature of the LC phase transition by linking a nonliquid crystal side chain, 4-methoxyphenyl-1-hexenyloxy (MOCH3), to the network backbone of a classical polysiloxane-based side-chain nematic LCE. The nematic-isotropic transition temperature (T ni) of the MOCH3 incorporated nematic LCE was lower than that of the normal nematic LCE without the incorporation of a nonliquid crystal chain by about 27 °C. Compared to the normal nematic LCE or its nanocomposite, the MOCH3 incorporated nematic LCE or its nanocomposite demonstrated more rapid thermo-actuated deformation or photo-actuated deformation, and can be actuated to attain full axial contraction at an obviously lowered temperature or by light with obviously lowered intensity, while the maximum contraction ratio basically did not vary. These research results indicate that some nonliquid crystal chains show potential for improving the characteristics and enhancing the application significance of LCE materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...