Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38894375

RESUMO

Deep learning has shown significant advantages in Automatic Dependent Surveillance-Broadcast (ADS-B) anomaly detection, but it is known for its susceptibility to adversarial examples which make anomaly detection models non-robust. In this study, we propose Time Neighborhood Accumulation Iteration Fast Gradient Sign Method (TNAI-FGSM) adversarial attacks which fully take into account the temporal correlation of an ADS-B time series, stabilize the update directions of adversarial samples, and escape from poor local optimum during the process of iterating. The experimental results show that TNAI-FGSM adversarial attacks can successfully attack ADS-B anomaly detection models and improve the transferability of ADS-B adversarial examples. Moreover, the TNAI-FGSM is superior to two well-known adversarial attacks called the Fast Gradient Sign Method (FGSM) and Basic Iterative Method (BIM). To the best of our understanding, we demonstrate, for the first time, the vulnerability of deep-learning-based ADS-B time series unsupervised anomaly detection models to adversarial examples, which is a crucial step in safety-critical and cost-critical Air Traffic Management (ATM).

2.
Entropy (Basel) ; 24(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36359695

RESUMO

This paper studies the intelligent reflecting surface (IRS) assisted secure transmission in unmanned aerial vehicle (UAV) communication systems, where the UAV base station, the legitimate receiver, and the malicious eavesdropper in the system are all equipped with multiple antennas. By deploying an IRS on the facade of a building, the UAV base station can be assisted to realize the secure transmission in this multiple-input multiple-output (MIMO) system. In order to maximize the secrecy rate (SR), the transmit precoding (TPC) matrix, artificial noise (AN) matrix, IRS phase shift matrix, and UAV position are jointly optimized subject to the constraints of transmit power limit, unit modulus of IRS phase shift, and maximum moving distance of UAV. Since the problem is non-convex, an alternating optimization (AO) algorithm is proposed to solve it. Specifically, the TPC matrix and AN covariance matrix are derived by the Lagrange dual method. The alternating direction method of multipliers (ADMM), majorization-minimization (MM), and Riemannian manifold gradient (RCG) algorithms are presented, respectively, to solve the IRS phase shift matrix, and then the performance of the three algorithms is compared. Based on the proportional integral (PI) control theory, a secrecy rate gradient (SRG) algorithm is proposed to iteratively search for the UAV position by following the direction of the secrecy rate gradient. The theoretic analysis and simulation results show that our proposed AO algorithm has a good convergence performance and can increase the SR by 40.5% compared with the method without IRS assistance.

3.
IEEE Trans Cybern ; 52(12): 13699-13713, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34797772

RESUMO

Although state estimation using a bad data detector (BDD) is a key procedure employed in power systems, the detector is vulnerable to false data injection attacks (FDIAs). Substantial deep learning methods have been proposed to detect such attacks. However, deep neural networks are susceptible to adversarial attacks or adversarial examples, where slight changes in inputs may lead to sharp changes in the corresponding outputs in even well-trained networks. This article introduces the joint adversarial example and FDIAs (AFDIAs) to explore various attack scenarios for state estimation in power systems. Considering that perturbations added directly to measurements are likely to be detected by BDDs, our proposed method of adding perturbations to state variables can guarantee that the attack is stealthy to BDDs. Then, malicious data that are stealthy to both BDDs and deep learning-based detectors can be generated. Theoretical and experimental results show that our proposed state-perturbation-based AFDIA method (S-AFDIA) can carry out attacks stealthy to both conventional BDDs and deep learning-based detectors, while our proposed measurement-perturbation-based adversarial FDIA method (M-AFDIA) succeeds if only deep learning-based detectors are used. The comparative experiments show that our proposed methods provide better performance than state-of-the-art methods. Besides, the ultimate effect of attacks can also be optimized using the proposed joint attack methods.


Assuntos
Braquidactilia , Humanos , Redes Neurais de Computação
4.
Comput Intell Neurosci ; 2021: 6235319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33531891

RESUMO

Underwater sonar objective detection plays an important role in the field of ocean exploration. In order to solve the problem of sonar objective detection under the complex environment, a sonar objective detection method is proposed based on dilated separable densely connected convolutional neural networks (DS-CNNs) and quantum-behaved particle swarm optimization (QPSO) algorithm. Firstly, the dilated separable convolution kernel is proposed to extend the local receptive field and enhance the feature extraction ability of the convolution layers. Secondly, based on the linear interpolation algorithm, a multisampling pooling (MS-pooling) operation is proposed to reduce the feature information loss and restore image resolution. At last, with contraction-expansion factor and difference variance in the traditional particle swarm optimization algorithm introduced, the QPSO algorithm is employed to optimize the weight parameters of the network model. The proposed method is validated on the sonar image dataset and is compared with other existing methods. Using DS-CNNs to detect different kinds of sonar objectives, the experiments shows that the detection accuracy of DS-CNNs reaches 96.98% and DS-CNNs have better detection effect and stronger robustness.


Assuntos
Algoritmos , Redes Neurais de Computação
5.
PLoS One ; 13(11): e0207705, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30462702

RESUMO

In view of the fact that the current online virtual network embedding algorithms do not consider the fragment resources generated in the embedding process deeply enough, resulting in the problem that the acceptance ratio and the revenue to cost ratio are both low, a mathematical model for virtual network reconfiguration is constructed and a heuristic algorithm for fragment-aware virtual network reconfiguration (FA-VNR) is proposed. The FA-VNR algorithm selects the set of virtual nodes to be migrated according to the fragment degrees of the physical nodes, and selects the best virtual node migration scheme according to the reduction of the fragment degrees of the physical nodes as well as the reduction of the embedding cost of the embedded virtual networks. Extensive simulation results show that the proposed FA-VNR algorithm not only can obviously improve the acceptance ratio and the revenue to cost ratio of the current online virtual network embedding algorithm, but also has better optimization effect than the existing virtual network reconfiguration algorithm.


Assuntos
Algoritmos , Internet , Modelos Teóricos
6.
Entropy (Basel) ; 20(12)2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33266665

RESUMO

To improve the low acceptance ratio and revenue to cost ratio caused by the poor match between the virtual nodes and the physical nodes in the existing virtual network embedding (VNE) algorithms, we established a multi-objective optimization integer linear programming model for the VNE problem, and proposed a novel two-stage virtual network embedding algorithm based on topology potential (VNE-TP). In the node embedding stage, the field theory once used for data clustering was introduced and a node embedding function designed to find the optimal physical node. In the link embedding stage, both the available bandwidth and hops of the candidate paths were considered, and a path embedding function designed to find the optimal path. Extensive simulation results show that the proposed algorithm outperforms other existing algorithms in terms of acceptance ratio and revenue to cost ratio.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...